227
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Virus-Like Particles Assembled Using Respiratory Syncytial Virus Matrix Protein Elicit Protective Immunity in Mice

, , &
Pages 6099-6110 | Received 13 Jul 2023, Accepted 01 Sep 2023, Published online: 11 Sep 2023

References

  • Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31(1):58–83. doi:10.1016/j.vaccine.2012.10.083
  • Mohsen MO, Gomes AC, Cabral-Miranda G, et al. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J Control Release. 2017;251:92–100. doi:10.1016/j.jconrel.2017.02.031
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–796. doi:10.1038/nri2868
  • Chu KB, Quan FS. Virus-like particle vaccines against respiratory viruses and protozoan parasites. Curr Top Microbiol Immunol. 2021. doi:10.1007/82_2021_232
  • Shi T, McAllister DA, O’Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017;390(10098):946–958. doi:10.1016/s0140-6736(17)30938-8
  • Tseng HF, Sy LS, Ackerson B, et al. Severe morbidity and short- and mid- to long-term mortality in older adults hospitalized with respiratory syncytial virus infection. J Infect Dis. 2020;222(8):1298–1310. doi:10.1093/infdis/jiaa361
  • Pilie P, Werbel WA, Riddell J, Shu X, Schaubel D, Gregg KS. Adult patients with respiratory syncytial virus infection: impact of solid organ and hematopoietic stem cell transplantation on outcomes. Transpl Infect Dis. 2015;17(4):551–557. doi:10.1111/tid.12409
  • McGinnes LW, Gravel KA, Finberg RW, et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol. 2011;85(1):366–377. doi:10.1128/jvi.01861-10
  • Lee S, Quan FS, Kwon Y, et al. Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antiviral Res. 2014;111:129–135. doi:10.1016/j.antiviral.2014.09.005
  • Murawski MR, McGinnes LW, Finberg RW, et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J Virol. 2010;84(2):1110–1123. doi:10.1128/jvi.01709-09
  • Lee S-H, Chu K-B, Kim M-J, et al. Virus-like particle vaccine expressing the respiratory syncytial virus pre-fusion and G proteins confers protection against RSV challenge infection. Pharmaceutics. 2023;15(3):782. doi:10.3390/pharmaceutics15030782
  • Shaikh FY, Cox RG, Lifland AW, et al. A critical phenylalanine residue in the respiratory syncytial virus fusion protein cytoplasmic tail mediates assembly of internal viral proteins into viral filaments and particles. mBio. 2012;3(1). doi:10.1128/mBio.00270-11
  • Meshram CD, Baviskar PS, Ognibene CM, Oomens AGP, García-Sastre A. The respiratory syncytial virus phosphoprotein, matrix protein, and fusion protein carboxy-terminal domain drive efficient filamentous virus-like particle formation. J Virol. 2016;90(23):10612–10628. doi:10.1128/jvi.01193-16
  • Ghildyal R, Li D, Peroulis I, et al. Interaction between the respiratory syncytial virus G glycoprotein cytoplasmic domain and the matrix protein. J Gen Virol. 2005;86(Pt 7):1879–1884. doi:10.1099/vir.0.80829-0
  • Bajorek M, Galloux M, Richard CA, et al. Tetramerization of phosphoprotein is essential for respiratory syncytial virus budding while its N terminal region mediates direct interactions with the matrix protein. J Virol. 2021;95(7). doi:10.1128/jvi.02217-20
  • Walpita P, Johns LM, Tandon R, Moore ML. Mammalian cell-derived respiratory syncytial virus-like particles protect the lower as well as the upper respiratory tract. PLoS One. 2015;10(7):e0130755. doi:10.1371/journal.pone.0130755
  • Jiao YY, Fu YH, Yan YF, et al. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus. Antiviral Res. 2017;144:57–69. doi:10.1016/j.antiviral.2017.05.005
  • Kim KS, Kim AR, Piao Y, Lee JH, Quan FS. A rapid, simple, and accurate plaque assay for human respiratory syncytial virus (HRSV). J Immunol Methods. 2017;446:15–20. doi:10.1016/j.jim.2017.03.020
  • Chu KB, Lee SH, Kim MJ, Kim AR, Moon EK, Quan FS. Virus-like particles coexpressing the PreF and Gt antigens of respiratory syncytial virus confer protection in mice. Nanomedicine. 2022;17(17):1159–1171. doi:10.2217/nnm-2022-0082
  • Kim KH, Li Z, Bhatnagar N, et al. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLoS Pathog. 2022;18(8):e1010755. doi:10.1371/journal.ppat.1010755
  • Kim AR, Lee DH, Lee SH, Rubino I, Choi HJ, Quan FS. Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein. PLoS One. 2018;13(1):e0191277. doi:10.1371/journal.pone.0191277
  • Sung RY, Hui SH, Wong CK, Lam CW, Yin J. A comparison of cytokine responses in respiratory syncytial virus and influenza A infections in infants. Eur J Pediatr. 2001;160(2):117–122. doi:10.1007/s004310000676
  • Bermejo-Martin JF, Garcia-Arevalo MC, De Lejarazu RO, et al. Predominance of Th2 cytokines, CXC chemokines and innate immunity mediators at the mucosal level during severe respiratory syncytial virus infection in children. Eur Cytokine Netw. 2007;18(3):162–167. doi:10.1684/ecn.2007.0096
  • Kim KH, Lee YT, Hwang HS, et al. Virus-like particle vaccine containing the F protein of respiratory syncytial virus confers protection without pulmonary disease by modulating specific subsets of dendritic cells and effector T cells. J Virol. 2015;89(22):11692–11705. doi:10.1128/jvi.02018-15
  • Démoulins T, Brügger M, Zumkehr B, et al. The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis. PLoS Pathog. 2021;17(4):e1009529. doi:10.1371/journal.ppat.1009529
  • Rutigliano JA, Graham BS. Prolonged production of TNF-alpha exacerbates illness during respiratory syncytial virus infection. J Immunol. 2004;173(5):3408–3417. doi:10.4049/jimmunol.173.5.3408
  • Ostler T, Davidson W, Ehl S. Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma. Eur J Immunol. 2002;32(8):2117–2123. doi:10.1002/1521-4141(200208)32:8
  • Kitcharoensakkul M, Bacharier LB, Yin-Declue H, et al. Impaired tumor necrosis factor-α secretion by CD4 T cells during respiratory syncytial virus bronchiolitis associated with recurrent wheeze. Immun Inflamm Dis. 2020;8(1):30–39. doi:10.1002/iid3.281
  • Roumanes D, Falsey AR, Quataert S, et al. T-cell responses in adults during natural respiratory syncytial virus infection. J Infect Dis. 2018;218(3):418–428. doi:10.1093/infdis/jiy016
  • Legardinier S, Klett D, Poirier JC, Combarnous Y, Cahoreau C. Mammalian-like nonsialyl complex-type N-glycosylation of equine gonadotropins in Mimic insect cells. Glycobiology. 2005;15(8):776–790. doi:10.1093/glycob/cwi060
  • Toth AM, Kuo CW, Khoo KH, Jarvis DL. A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol. 2014;182–183:19–29. doi:10.1016/j.jbiotec.2014.04.011
  • Chavez-Pena C, Kamen AA. RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnol Adv. 2018;36(2):443–451. doi:10.1016/j.biotechadv.2018.01.008