257
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Emergence of Tigecycline and Carbapenem-Resistant Citrobacter freundii Co-Carrying tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 from a Sepsis Patient

, , , , , , , & ORCID Icon show all
Pages 5855-5868 | Received 10 Jul 2023, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae Infections: report from the China CRE network. Antimicrob Agents Chemother. 2018;62(2). doi:10.1128/AAC.01882-17
  • Tumbarello M, Viale P, Bassetti M, De Rosa FG, Spanu T, Viscoli C. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study--authors’ response. J Antimicrob Chemother. 2015;70(10):2922. doi:10.1093/jac/dkv200
  • Kumarasamy K, Kalyanasundaram A. Emergence of Klebsiella pneumoniae isolate co-producing NDM-1 with KPC-2 from India. J Antimicrob Chemother. 2012;67(1):243–244. doi:10.1093/jac/dkr431
  • Pereira PS, Borghi M, Albano RM, et al. Coproduction of NDM-1 and KPC-2 in Enterobacter hormaechei from Brazil. Microb Drug Resist. 2015;21(2):234–236. doi:10.1089/mdr.2014.0171
  • Wu W, Feng Y, Carattoli A, Zong Z. Characterization of an Enterobacter cloacae strain producing both KPC and NDM carbapenemases by whole-genome sequencing. Antimicrob Agents Chemother. 2015;59(10):6625–6628. doi:10.1128/AAC.01275-15
  • Wu W, Espedido B, Feng Y, Zong Z. Citrobacter freundii carrying blaKPC-2 and blaNDM-1: characterization by whole genome sequencing. Sci Rep. 2016;6(1):30670. doi:10.1038/srep30670
  • Feng J, Qiu Y, Yin Z, et al. Coexistence of a novel KPC-2-encoding MDR plasmid and an NDM-1-encoding pNDM-HN380-like plasmid in a clinical isolate of Citrobacter freundii. J Antimicrob Chemother. 2015;70(11):2987–2991. doi:10.1093/jac/dkv232
  • Li X, Zhu Y, Shen M, Du J, Zhang L, Wang D. Draft genome sequence of Enterobacter cloacae HBY, a ST128 clinical strain co-producing KPC-2 and NDM-1 carbapenemases. J Glob Antimicrob Resist. 2018;12:1–2. doi:10.1016/j.jgar.2017.10.022
  • Alhashem F, Tiren-Verbeet NL, Alp E, Doganay M. Treatment of sepsis: what is the antibiotic choice in bacteremia due to carbapenem resistant Enterobacteriaceae? World J Clin Cases. 2017;5(8):324–332. doi:10.12998/wjcc.v5.i8.324
  • Hoban DJ, Bouchillon SK, Johnson BM, Johnson JL, Dowzicky MJ. In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn Microbiol Infect Dis. 2005;52(3):215–227. doi:10.1016/j.diagmicrobio.2005.06.001
  • Sheng ZK, Hu F, Wang W, et al. Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2014;58(11):6982–6985. doi:10.1128/AAC.03808-14
  • Lv L, Wan M, Wang C, et al. Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. mBio. 2020;11(2). doi:10.1128/mBio.02930-19
  • Sun S, Gao H, Liu Y, et al. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae. Emerg Microbes Infect. 2020;9(1):1102–1113. doi:10.1080/22221751.2020.1768805
  • Hirabayashi A, Ha VTT, Nguyen AV, Nguyen ST, Shibayama K, Suzuki M. Emergence of a plasmid-borne tigecycline resistance in Klebsiella pneumoniae in Vietnam. J Med Microbiol. 2021;70(3). doi:10.1099/jmm.0.001320
  • Peng K, Wang Q, Yin Y, et al. Plasmids shape the current prevalence of tmexCD1-toprJ1 among Klebsiella pneumoniae in food production chains. mSystems. 2021;6(5):e0070221. doi:10.1128/mSystems.00702-21
  • Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene blaVIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother. 2021;76(6):1455–1458. doi:10.1093/jac/dkab044
  • Xu J, Zhu Z, Chen Y, Wang W, He F. The plasmid-borne tet(A) gene is an important factor causing tigecycline resistance in ST11 carbapenem-resistant Klebsiella pneumoniae under selective pressure. Front Microbiol. 2021;12:644949. doi:10.3389/fmicb.2021.644949
  • Shahada F, Sekizuka T, Kuroda M, et al. Characterization of Salmonella enterica serovar Typhimurium isolates harboring a chromosomally encoded CMY-2 beta-lactamase gene located on a multidrug resistance genomic island. Antimicrob Agents Chemother. 2011;55(9):4114–4121. doi:10.1128/AAC.00560-11
  • Sommer MOA, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009;325(5944):1128–1131. doi:10.1126/science.1176950
  • Akinbowale OL, Peng H, Barton MD. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol. 2007;103(5):2016–2025. doi:10.1111/j.1365-2672.2007.03445.x
  • Chiu S-K, Huang L-Y, Chen H, et al. Roles of ramR and tet(A) mutations in conferring ti resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2017;61(8). doi:10.1128/AAC.00391-17
  • Akiyama T, Presedo J, Khan AA. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents. 2013;42(2):133–140. doi:10.1016/j.ijantimicag.2013.04.017
  • Humphries R, Bobenchik AM, Hindler JA, Schuetz AN, McAdam AJ. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st Edition. J Clin Microbiol. 2021;59(12):e0021321. doi:10.1128/JCM.00213-21
  • Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107–118. doi:10.4161/viru.22718
  • Ye Y, Wu Q, Yao L, Dong X, Wu K, Zhang J. Analysis of a consensus fragment in ERIC-PCR fingerprinting of Enterobacter sakazakii. Int J Food Microbiol. 2009;132(2–3):172–175. doi:10.1016/j.ijfoodmicro.2009.03.018
  • Codjoe FS, Brown CA, Smith TJ, Miller K, Donkor ES, Duse AG. Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique. PLoS One. 2019;14(9):e0222168. doi:10.1371/journal.pone.0222168
  • Hirabayashi A, Dao TD, Takemura T, et al. A Transferable IncC-IncX3 hybrid plasmid cocarrying blaNDM-4, tet(X), and tmexCD3-toprJ3 confers resistance to carbapenem and tigecycline. mSphere. 2021;6(4):e0059221. doi:10.1128/mSphere.00592-21
  • Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform. 2019;20(4):1576–1582. doi:10.1093/bib/bbx081
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi:10.1093/bioinformatics/btr039
  • Tekeli A, Dolapci İ, Evren E, Oguzman E, Karahan ZC. Characterization of Klebsiella pneumoniae coproducing KPC and NDM-1 Carbapenemases from Turkey. Microb Drug Resist. 2020;26(2):118–125. doi:10.1089/mdr.2019.0086
  • Balushi MA, Kumar R, Al-Rashdi A, et al. Genomic analysis of the emerging carbapenem-resistant Klebsiella pneumoniae sequence type 11 harbouring Klebsiella pneumoniae carbapenemase (KPC) in Oman. J Infect Public Health. 2022;15(10):1089–1096. doi:10.1016/j.jiph.2022.08.014
  • Wang J, Yao X, Luo J, Lv L, Zeng Z, Liu J-H. Emergence of Escherichia coli co-producing NDM-1 and KPC-2 carbapenemases from a retail vegetable, China. J Antimicrob Chemother. 2018;73(1):252–254. doi:10.1093/jac/dkx335
  • Wang X, Xiao W, Li L, et al. Analysis of the molecular characteristics of a blaKPC-2-harbouring untypeable plasmid in Serratia marcescens. Int Microbiol. 2022;25(2):237–244. doi:10.1007/s10123-021-00172-2
  • Wang D, Zhu J, Zhou K, et al. Genetic characterization of novel class 1 Integrons In0, In1069 and In1287 to In1290, and the inference of In1069-associated integron evolution in Enterobacteriaceae. Antimicrob Resist Infect Control. 2017;6(1):84. doi:10.1186/s13756-017-0241-9
  • Chen J, Zeng Y, Zhang R, Cai J. In vivo emergence of colistin and tigecycline resistance in carbapenem-resistant hypervirulent Klebsiella pneumoniae during antibiotics treatment. Front Microbiol. 2021;12:702956. doi:10.3389/fmicb.2021.702956
  • Yan WJ, Jing N, Wang SM, et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae and emergence of tigecycline non-susceptible strains in the Henan province in China: a multicentrer study. J Med Microbiol. 2021;70(3). doi:10.1099/jmm.0.001325
  • Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis. 2020;26(2):289–297. doi:10.3201/eid2602.190594
  • Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA. 2021;12(1):11. doi:10.1186/s13100-02100239-x
  • Dong N, Zeng Y, Wang Y, et al. Distribution and spread of the mobilised RND efflux pump gene cluster tmexCD-toprJ in clinical Gram-negative bacteria: a molecular epidemiological study. Lancet Microbe. 2022;3(11):e846–e856. doi:10.1016/S2666-5247(22)00221-X
  • Dang B, Zhang H, Li Z, Ma S, Xu Z. Coexistence of the bla(NDM-1)-carrying plasmid pWLK-NDM and the bla(KPC-2)-carrying plasmid pWLK-KPC in a Raoultella ornithinolytica isolate. Sci Rep. 2020;10(1):2360. doi:10.1038/s41598-020-59341-4