142
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Whole-Genome Sequencing of an Escherichia coli ST69 Strain Harboring blaCTX-M-27 on a Hybrid Plasmid

, , ORCID Icon, , , , , , , , ORCID Icon, , & show all
Pages 365-375 | Received 17 Aug 2023, Accepted 29 Dec 2023, Published online: 31 Jan 2024

References

  • Behzadi P, García-Perdomo HA, Autrán Gómez AM, et al. Editorial: uropathogens, urinary tract infections, the host-pathogen interactions and treatment. Front Microbiol. 2023;14:1183236. doi:10.3389/fmicb.2023.1183236
  • Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181–211. doi:10.1007/82_2018_110
  • Issakhanian L, Behzadi PJCPD. Antimicrobial agents and urinary tract infections. Current Pharmaceutical Design. 2019;25(12):1409–1423. doi:10.2174/1381612825999190619130216
  • Behzadi PJFM. Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Int J Med. 2020;65(1):45–65.
  • Moradi Y, Eshrati B, Motevalian SA, et al. A systematic review and meta-analysis on the prevalence of Escherichia coli and extended-spectrum β-lactamase-producing Escherichia coli in pregnant women. Arch Gynecol Obstet. 2021;303(2):363–379. doi:10.1007/s00404-020-05903-w
  • Denkel LA, Schwab F, Kola A, et al. The mother as most important risk factor for colonization of very low birth weight (VLBW) infants with extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E). J Antimicrob Chemother. 2014;69(8):2230–2237. doi:10.1093/jac/dku097
  • Page JM, Bardsley T, Thorsten V, et al. Stillbirth Associated With Infection in a Diverse U.S. Cohort Obstet Gynecol. 2019;134(6):1187–1196. doi:10.1097/AOG.0000000000003515
  • Algammal A, Hetta HF, Mabrok M, et al. Editorial: emerging multidrug-resistant bacterial pathogens ”superbugs”: a rising public health threat. Front Microbiol. 2023;14:1135614. doi:10.3389/fmicb.2023.1135614
  • Serwecińska LJW. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020;12(12):3313.
  • Ansaldi Y, Martinez de Tejada Weber B. Urinary tract infections in pregnancy. Clin Microbiol Infect. 2022;29(10):1249–1253. doi:10.1016/j.cmi.2022.08.015
  • Zhang JS, Liu G, Zhang W-S, et al. Antibiotic usage in Chinese children: a point prevalence survey. World J Pediatr. 2018;14(4):335–343. doi:10.1007/s12519-018-0176-0
  • Roer L, Hansen F, Thomsen MCF, et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J Antimicrob Chemother. 2017;72(7):1922–1929. doi:10.1093/jac/dkx092
  • Behzadi P, García-Perdomo HA, Karpiński TM, et al. Metallo-ß-lactamases: a review. Mol Biol Rep. 2020;47(8):6281–6294. doi:10.1007/s11033-020-05651-9
  • Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.2005
  • Medeiros AA. Beta-lactamases. Br Med Bull. 1984;40(1):18–27. doi:10.1093/oxfordjournals.bmb.a071942
  • Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991;35(9):1697–1704. doi:10.1128/AAC.35.9.1697
  • Tzouvelekis LS, Tzelepi E, Tassios PT, et al. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents. 2000;14(2):137–142. doi:10.1016/S0924-8579(99)00165-X
  • Bauernfeind A, Grimm H, Schweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection. 1990;18(5):294–298. doi:10.1007/BF01647010
  • Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–174. doi:10.1093/jac/dkl483
  • Partridge SR, Kwong SM, Firth N, et al. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4). doi:10.1128/CMR.00088-17
  • Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6–7):298–304. doi:10.1016/j.ijmm.2013.02.001
  • Schink AK, Kadlec K, Kaspar H, et al. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother. 2013;68(8):1741–1749. doi:10.1093/jac/dkt123
  • Cantón R, González-Alba JM, Galán JC. CTX-M Enzymes: origin and Diffusion. Front Microbiol. 2012;3:110. doi:10.3389/fmicb.2012.00110
  • Poirel L, Naas T, Nordmann P. Genetic support of extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14 Suppl 1:75–81. doi:10.1111/j.1469-0691.2007.01865.x
  • Myers EW, Sutton GG, Delcher AL, et al. A Whole-Genome Assembly of Drosophila. Science. 2000;287(5461):2196–2204. doi:10.1126/science.287.5461.2196
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi:10.1371/journal.pone.0112963
  • Sayers EW, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2020;48(D1):D84–d86. doi:10.1093/nar/gkz956
  • Tatusova T, DiCuccio M, Badretdin A, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–6624. doi:10.1093/nar/gkw569
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–1361. doi:10.1128/JCM.06094-11
  • Carattoli A, Zankari E, García-Fernández A, et al. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi:10.1128/AAC.02412-14
  • Siguier P, et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6. doi:10.1093/nar/gkj014
  • Morgulis A, Coulouris G, Raytselis Y, et al. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24(16):1757–1764. doi:10.1093/bioinformatics/btn322
  • Alikhan NF, Petty NK, Ben Zakour NL, et al. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. doi:10.1186/1471-2164-12-402
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi:10.1093/bioinformatics/btr039
  • Novais Â, Vuotto C, Pires J, et al. Diversity and biofilm-production ability among isolates of Escherichia coli phylogroup D belonging to ST69, ST393 and ST405 clonal groups. BMC Microbiol. 2013;13(1):144. doi:10.1186/1471-2180-13-144
  • Behzadi P, Najafi A, Behzadi E, et al. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction. Cent European J Urol. 2016;69(1):105–111. doi:10.5173/ceju.2016.654
  • Khonsari MS, Behzadi P, Foroohi FJMG. The prevalence of type 3 fimbriae in Uropathogenic Escherichia coli isolated from clinical urine samples. Water. 2021;28:100881.
  • Mattioni Marchetti V, Bitar I, Piazza A, et al. Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy. Microorganisms. 2020;8(8):1232. doi:10.3390/microorganisms8081232
  • Soliman AM, Ramadan H, Sadek M, et al. Draft genome sequence of a bla(NDM-1)- and bla(OXA-244)-carrying multidrug-resistant Escherichia coli D-ST69 clinical isolate from Egypt. J Glob Antimicrob Resist. 2020;22:832–834. doi:10.1016/j.jgar.2020.07.015
  • Hammad AM, Hoffmann M, Gonzalez-Escalona N, et al. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect Genet Evol. 2019;73:126–131. doi:10.1016/j.meegid.2019.04.021
  • Yang QE, Sun J, Li L, et al. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol. 2015;6:964. doi:10.3389/fmicb.2015.00964
  • Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–591. doi:10.1128/CMR.00116-14
  • Liao XP, Liu B-T, Yang Q-E, et al. Comparison of plasmids coharboring 16S rRNA methylase and extended-spectrum β-lactamase genes among Escherichia coli isolates from pets and poultry. J Food Prot. 2013;76(12):2018–2023. doi:10.4315/0362-028X.JFP-13-200
  • Hozzari A, Behzadi P, Kerishchi Khiabani P, et al. Clinical cases, drug resistance, and virulence genes profiling in Uropathogenic Escherichia coli. J Appl Genet. 2020;61(2):265–273. doi:10.1007/s13353-020-00542-y
  • Woodford N, Carattoli A, Karisik E, et al. Complete Nucleotide Sequences of Plasmids pEK204, pEK499, and pEK516, Encoding CTX-M Enzymes in Three Major Escherichia coli Lineages from the United Kingdom, All Belonging to the International O25:H4-ST131 Clone. Antimicrob Agents Chemother. 2009;53(10):4472–4482. doi:10.1128/AAC.00688-09
  • Dahmen S, Madec JY, Haenni M. F2:A-:B- plasmid carrying the extended-spectrum β-lactamase bla(CTX-M-55/57) gene in Proteus mirabilis isolated from a primate. Int J Antimicrob Agents. 2013;41(6):594–595. doi:10.1016/j.ijantimicag.2013.02.004
  • Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–2155. doi:10.1093/jac/dkx146
  • Matsumura Y, Johnson JR, Yamamoto M, et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H 30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother. 2015;70(6):1639–1649. doi:10.1093/jac/dkv017
  • Rohde AM, Zweigner J, Wiese-Posselt M, et al. Prevalence of third-generation cephalosporin-resistant Enterobacterales colonization on hospital admission and ESBL genotype-specific risk factors: a cross-sectional study in six German university hospitals. J Antimicrob Chemother. 2020;75(6):1631–1638. doi:10.1093/jac/dkaa052
  • Zhang Y, et al. A Novel Structure Harboring bla(CTX-M-27) on IncF Plasmids in Escherichia coli Isolated from Swine in China. Antibiotics. 2021;10(4).
  • Poirel L, Decousser JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother. 2003;47(9):2938–2945. doi:10.1128/AAC.47.9.2938-2945.2003
  • Poirel L, Lartigue M-F, Decousser J-W, et al. IS Ecp1B -Mediated Transposition of bla CTX-M in Escherichia coli. Antimicrob Agents Chemother. 2005;49(1):447–450. doi:10.1128/AAC.49.1.447-450.2005
  • Tavakoli NP, DeVost J, Derbyshire KM. Defining functional regions of the IS903 transposase. J Mol Biol. 1997;274(4):491–504. doi:10.1006/jmbi.1997.1410
  • Mollet B, Iida S, Shepherd J, et al. Nucleotide sequence of IS 26, a new prokaryotic mobile genetic etement. Nucleic Acids Res. 1983;11(18):6319–6330. doi:10.1093/nar/11.18.6319
  • Harmer CJ, Hall RM. IS26 cannot move alone. J Antimicrob Chemother. 2021;76(6):1428–1432. doi:10.1093/jac/dkab055
  • Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio. 2014;5(5):e01801–14. doi:10.1128/mBio.01801-14
  • Lee KY, Hopkins JD, Syvanen M. Direct involvement of IS26 in an antibiotic resistance operon. J Bacteriol. 1990;172(6):3229–3236. doi:10.1128/jb.172.6.3229-3236.1990
  • Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46(9):2727–2734. doi:10.1128/AAC.46.9.2727-2734.2002
  • Arenz S, Ramu H, Gupta P, et al. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Nat Commun. 2014;5(1):3501. doi:10.1038/ncomms4501
  • Noguchi N, Takada K, Katayama J, et al. Regulation of Transcription of the mph (A) Gene for Macrolide 2′-Phosphotransferase I in Escherichia coli: characterization of the Regulatory Gene mphR (A). J Bacteriol. 2000;182(18):5052–5058. doi:10.1128/JB.182.18.5052-5058.2000
  • Nusrin S, Asad A, Hayat S, et al. Multiple Mechanisms Confer Resistance to Azithromycin in Shigella in Bangladesh: a Comprehensive Whole Genome-Based Approach. Microbiol Spectr. 2022;10(4):e0074122. doi:10.1128/spectrum.00741-22
  • Xiang Y, Wu F, Chai Y, et al. A new plasmid carrying mphA causes prevalence of azithromycin resistance in enterotoxigenic Escherichia coli serogroup O6. BMC Microbiol. 2020;20(1):247. doi:10.1186/s12866-020-01927-z
  • Gillings M, Boucher Y, Labbate M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008;190(14):5095–5100. doi:10.1128/JB.00152-08
  • Baltazar M, Bourgeois-Nicolaos N, Larroudé M, et al. Activation of class 1 integron integrase is promoted in the intestinal environment. PLoS Genet. 2022;18(4):e1010177. doi:10.1371/journal.pgen.1010177
  • Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78(2):257–277. doi:10.1128/MMBR.00056-13
  • Fluit AC, Schmitz FJ. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis. 1999;18(11):761–770. doi:10.1007/s100960050398
  • Collis CM, Hall RM. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol. 1992;174(5):1574–1585. doi:10.1128/jb.174.5.1574-1585.1992