740
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat

ORCID Icon &
Pages 7641-7662 | Received 14 Sep 2023, Accepted 29 Nov 2023, Published online: 13 Dec 2023

References

  • Algammal AM, Hetta HF, Elkelish A. Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255–3265. doi:10.2147/IDR.S272733
  • Namvar AE, Bastarahang S, Abbasi N, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hygiene and Infection Control. 2014;9(3):Doc23. doi:10.3205/dgkh000243
  • Hindy JR, Quintero-Martinez JA, Lee AT, et al. Incidence trends and epidemiology of Staphylococcus aureus bacteremia: a systematic review of population-based studies. Cureus. 2022;14(5):e25460. doi:10.7759/cureus.25460.
  • O’Hara LM, Calfee DP, Miller LG, et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2019;69(Supplement_3):S171–S177. doi:10.1093/cid/ciz621.
  • Weber DJ, Rutala WA. Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Infect Control Hosp Epidemiol. 2013;34(5):449–452. doi:10.1086/670223
  • Popovich KJ, Green SJ, Okamoto K, et al. MRSA transmission in intensive care units: genomic analysis of patients, their environments, and healthcare workers. Clin Infect Dis. 2021;72(11):1879–1887. doi:10.1093/cid/ciaa731
  • Al-Kharabsheh R, Ahmad M. Skin and mucous membranes colonisation with Staphylococcus aureus or MRSA as a risk factor for surgical site infections in elective Caesarean Section. J Obstetrics Gynaecol. 2022;42(5):888–893. doi:10.1080/01443615.2021.1954147
  • Nataraj BH, Mallappa RH. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA). Curr Microbiol. 2021;78(6):2194–2211. doi:10.1007/s00284-021-02442-8
  • Nelson RE, Slayton RB, Stevens VW, et al. Attributable mortality of healthcare-associated infections due to multidrug-resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2017;38(7):848–856. doi:10.1017/ice.2017.83
  • Lee AS, De Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):1–23. doi:10.1038/s41572-018-0001-z
  • David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–687. doi:10.1128/CMR.00081-09
  • Soe PE, Han WW, Sagili KD, Satyanarayana S. High prevalence of methicillin-resistant Staphylococcus aureus among healthcare facilities and its related factors in Myanmar (2018–2019). Trop Med Infect Dis. 2021;6(2). doi:10.3390/tropicalmed6020070
  • Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front Mol Biosci. 2021;8:654038. doi:10.3389/fmolb.2021.654038
  • Chakraborty N, Jha D, Roy I, et al. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnol. 2022;20(1):375. doi:10.1186/s12951-022-01573-9
  • World Health Organization. Antimicrobial resistance; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed December 4, 2023.
  • Matamoros-Recio A, Franco-Gonzalez JF, Forgione RE, Torres-Mozas A, Silipo A, Martín-Santamaría S. Understanding the antibacterial resistance: computational explorations in bacterial membranes. ACS Omega. 2021;6(9):6041–6054. doi:10.1021/acsomega.0c05590
  • Abushaheen MA, Alosaimi M, Fatani AJ, et al. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month. 2020;66(6):100971. doi:10.1016/j.disamonth.2020.100971
  • Saha M, Sarkar A. Review on multiple facets of drug resistance: a rising challenge in the 21st century. J Xenobiot. 2021;11(4):197–214 doi:10.3390/jox11040013.
  • Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evolut. 2020;88(1):26–40. doi:10.1007/s00239-019-09914-3
  • Morrison L, Zembower TR. Antimicrobial resistance. Gastrointest Endosc Clin N. 2020;30(4):619–635. doi:10.1016/j.giec.2020.06.004
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations; 2016. Available from: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed December 4, 2023.
  • Samir S, El-Far A, Okasha H, Mahdy R, Samir F, Nasr S. Isolation and characterization of lytic bacteriophages from sewage at an Egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi J Biol Sci. 2022;29(5):3097–3106. doi:10.1016/j.sjbs.2022.03.019
  • Murray CJL, Ikuta KS, Sharara F. 2022 Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • Gurung RR, Maharjan P, Chhetri GG. Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Sci OA. 2020;6(4):Fso464. doi:10.2144/fsoa-2019-0122
  • Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. doi:10.3934/microbiol.2018.3.482
  • Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629–641. doi:10.1038/nrmicro2200
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):18033. doi:10.1038/nrdp.2018.33
  • Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):10–128. doi:10.1128/CMR.00047-19
  • Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014;66(8):572–577. doi:10.1002/iub.1289
  • Harkins CP, Pichon B, Doumith M, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18(1):130. doi:10.1186/s13059-017-1252-9
  • Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357(9264):1225–1240. doi:10.1016/S0140-6736(00)04403-2
  • Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog. 2002;85(Pt 1):57–72. doi:10.3184/003685002783238870
  • Wu SW, de Lencastre H, Tomasz A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol. 2001;183(8):2417–2424. doi:10.1128/JB.183.8.2417-2424.2001
  • Zeman M, Mašlaňová I, Indráková A, et al. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep. 2017;7(1):46319. doi:10.1038/srep46319
  • Larsen J, Raisen CL, Ba X, et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature. 2022;602(7895):135–141. doi:10.1038/s41586-021-04265-w
  • Raygada JL, Levine DP. Methicillin-resistant Staphylococcus aureus: a growing risk in the hospital and in the community. Am Health Drug Benefits. 2009;2(2):86–95.
  • Zhu F, Zhuang H, Ji S, et al. Household transmission of community-associated methicillin-resistant Staphylococcus aureus. Front Public Health. 2021;9:658638. doi:10.3389/fpubh.2021.658638
  • Anjum MF, Marco-Jimenez F, Duncan D, Marín C, Smith RP, Evans SJ. Livestock-associated methicillin-resistant Staphylococcus aureus from animals and animal products in the UK. Front Microbiol. 2019;10:2136. doi:10.3389/fmicb.2019.02136
  • Parvez MAK, Ferdous RN, Rahman MS, Islam S. Healthcare-associated (HA) and community-associated (CA) methicillin resistant Staphylococcus aureus (MRSA) in Bangladesh - Source, diagnosis and treatment. J Genet Eng Biotechnol. 2018;16(2):473–478. doi:10.1016/j.jgeb.2018.05.004
  • Uehara Y, Sasaki T, Baba T, et al. Regional outbreak of community-associated methicillin-resistant Staphylococcus aureus ST834 in Japanese children. BMC Infect Dis. 2019;19(1):35. doi:10.1186/s12879-018-3646-z
  • Kateete D, Bwanga F, Seni J, et al. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrob Resist Infect Contr. 2019;8(1). doi:10.1186/s13756-019-0551-1
  • Cuny C, Köck R, Witte W. Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int J Med Microbiol. 2013;303(6–7):331–337. doi:10.1016/j.ijmm.2013.02.010
  • Chroboczek T, Boisset S, Rasigade JP, et al. Clonal complex 398 methicillin susceptible Staphylococcus aureus: a frequent unspecialized human pathogen with specific phenotypic and genotypic characteristics. PLoS One. 2013;8(11):e68462. doi:10.1371/journal.pone.0068462
  • Hasanpour AH, Sepidarkish M, Mollalo A, et al. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2023;12(1):4. doi:10.1186/s13756-023-01210-6
  • Ali Alghamdi B, Al-Johani I, Al-Shamrani JM, et al. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci. 2023;30(4):103604. doi:10.1016/j.sjbs.2023.103604
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203–218. doi:10.1038/s41579-018-0147-4
  • Lewis K. Persister cells. Ann Rev Microbiol. 2010;64(1):357–372. doi:10.1146/annurev.micro.112408.134306
  • Loss G, Simões PM, Valour F, et al. Staphylococcus aureus Small Colony Variants (SCVs): news from a chronic prosthetic joint infection. Front Cell Infect Microbiol. 2019;9:363. doi:10.3389/fcimb.2019.00363
  • Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9(1):162. doi:10.1186/s13756-020-00830-6
  • Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019;4(9):1432–1442. doi:10.1038/s41564-019-0503-9
  • Dashtbani-Roozbehani A, Brown MH. Efflux pump mediated antimicrobial resistance by staphylococci in health-related environments: challenges and the quest for inhibition. Antibiotics. 2021;10(12). doi:10.3390/antibiotics10121502
  • Machowska A, Stålsby Lundborg C. Drivers of irrational use of antibiotics in Europe. Int J Environ Res Public Health. 2019;16(1):27. doi:10.3390/ijerph16010027
  • Hashem RA, Yassin AS, Zedan HH, Amin MA. Fluoroquinolone resistant mechanisms in methicillin-resistant Staphylococcus aureus clinical isolates in Cairo, Egypt. J Infect Dev Ctries. 2013;7(11):796–803. doi:10.3855/jidc.3105
  • Kaatz GW, Seo SM. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1997;41(12):2733–2737. doi:10.1128/AAC.41.12.2733
  • Staats G, Mc Carlie S, Van der Walt B, Bragg R. The linkage between antibiotic and disinfectant resistance. In: Antimicrobial Research and One Health in Africa. Springer; 2023:241–274.
  • Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: mobileElementFinder. J Antimicrob Chemother. 2020;76(1):101–109. doi:10.1093/jac/dkaa390
  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4). doi:10.1128/CMR.00088-17
  • Khedkar S, Smyshlyaev G, Letunic I, et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 2022;50(6):3155–3168. doi:10.1093/nar/gkac163
  • Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057–3071. doi:10.1007/s00018-010-0389-4
  • Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol. 2014;11:33–39. doi:10.1016/j.ddtec.2014.02.001
  • Davidovich NV, Kukalevskaya NN, Bashilova EN, Bazhukova TA. [General principles of antibiotic resistance evolution in bacteria (review of literature)]. лсновные принципы антибиот эволюцииикорезистентност у бактерий (обзор литературы). Клиническая лабораторная диагностика. Klinicheskaia laboratornaia diagnostika. 2020;65(6):387–393. Russian. doi:10.18821/0869-2084-2020-65-6-387-393
  • Martínez JL, Baquero F, Bouza E, Gutiérrez-Fuentes JA, Coque TM. Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiol Spectr. 2018;6(1). doi:10.1128/microbiolspec.MTBP-0006-2016
  • Sun D, Jeannot K, Xiao Y, Knapp CW. Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol. 2019;10:1933. doi:10.3389/fmicb.2019.01933
  • Vinayamohan PG, Pellissery AJ, Venkitanarayanan K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr Opin Food Sci. 2022;47:100882. doi:10.1016/j.cofs.2022.100882
  • von Wintersdorff CJ, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173. doi:10.3389/fmicb.2016.00173
  • Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc London Ser B. 2019;364(1527):2275–2289. doi:10.1098/rstb.2009.0037
  • Eyler RF, Shvets K. Clinical pharmacology of antibiotics. Clin J Am Soc Nephrol. 2019;14(7):1080–1090. doi:10.2215/CJN.08140718
  • Zhu Y, Huang WE, Yang Q. Clinical perspective of antimicrobial resistance in bacteria. Infect Drug Resist. 2022;15:735–746. doi:10.2147/IDR.S345574
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Global Health. 2015;109(7):309–318. doi:10.1179/2047773215Y.0000000030
  • Sweileh WM. Global research publications on irrational use of antimicrobials: call for more research to contain antimicrobial resistance. Globalizat Health. 2021;17(1):94. doi:10.1186/s12992-021-00754-9
  • Xavier SP, Victor A, Cumaquela G, Vasco MD, Rodrigues OAS. Inappropriate use of antibiotics and its predictors in pediatric patients admitted at the Central Hospital of Nampula, Mozambique. Antimicrob Resist Infect Contr. 2022;11(1):79. doi:10.1186/s13756-022-01115-w
  • Burnham C-AD, Leeds J, Nordmann P, O’Grady J, Patel J. Diagnosing antimicrobial resistance. Nat Rev Microbiol. 2017;15(11):697–703. doi:10.1038/nrmicro.2017.103
  • Andreatos N, Shehadeh F, Pliakos EE, Mylonakis E. The impact of antibiotic prescription rates on the incidence of MRSA bloodstream infections: a county-level, US-wide analysis. Int J Antimicrob Agents. 2018;52(2):195–200. doi:10.1016/j.ijantimicag.2018.04.003
  • Jernigan JA, Hatfield KM, Wolford H, et al. Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. N Engl J Med. 2020;382(14):1309–1319. doi:10.1056/NEJMoa1914433
  • Ghana M. Policy on antimicrobial use and resistance; 2017. Available from: https://www.moh.gov.gh/wp-content/uploads/2018/04/AMR-POLICY-A5_09.03.2018-Signed.pdf. Accessed December 4, 2023.
  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources. Potential Public Health Implic. 2018;23(4):795. doi:10.3390/molecules23040795.
  • World Health Organization. World Health Organization (WHO): substandard and falsified medical products; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/substandard-and-falsified-medical-products. Accessed December 4, 2023.
  • Zabala GA, Bellingham K, Vidhamaly V, et al. Substandard and falsified antibiotics: neglected drivers of antimicrobial resistance? BMJ Global Health. 2022;7(8):e008587. doi:10.1136/bmjgh-2022-008587
  • McManus D, Naughton BD. A systematic review of substandard, falsified, unlicensed and unregistered medicine sampling studies: a focus on context, prevalence, and quality. BMJ Global Health. 2020;5(8). doi:10.1136/bmjgh-2020-002393
  • Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6(1):47. doi:10.1186/s13756-017-0208-x
  • Ferry T, Leboucher G, Fevre C, et al. Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect Dis. 2018;5(11). doi:10.1093/ofid/ofy269
  • Gullberg E, Cao S, Berg OG, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7):e1002158. doi:10.1371/journal.ppat.1002158
  • Shanmugakani RK, Srinivasan B, Glesby MJ, et al. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab Chip. 2020;20(15):2607–2625. doi:10.1039/D0LC00034E
  • Trevas D, Caliendo AM, Hanson K, Levy J, Ginocchio CC; America ftIDSo. Diagnostic tests can stem the threat of antimicrobial resistance: infectious disease professionals can help. Clin Infect Dis. 2020;72(11):e893–e900. doi:10.1093/cid/ciaa1527
  • Pokharel S, Raut S, Adhikari B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Global Health. 2019;4(6):e002104. doi:10.1136/bmjgh-2019-002104
  • Sartelli M, C. Hardcastle T. Antibiotic use in low and middle-income countries and the challenges of antimicrobial resistance in surgery. Antibiotics. 2020;9(8):497. doi:10.3390/antibiotics9080497
  • McAdams D, Wollein Waldetoft K, Tedijanto C, Lipsitch M, Brown SP. Resistance diagnostics as a public health tool to combat antibiotic resistance: a model-based evaluation. PLoS Biol. 2019;17(5):e3000250. doi:10.1371/journal.pbio.3000250
  • Cohen A, Bont L, Engelhard D, et al. A multifaceted ‘omics’ approach for addressing the challenge of antimicrobial resistance. Future Microbiol. 2015;10(3):365–376. doi:10.2217/fmb.14.127
  • Anjum MF, Zankari E, Hasman H. Molecular methods for detection of antimicrobial resistance. Microbiol Spectr. 2017;5(6). doi:10.1128/microbiolspec.ARBA-0011-2017
  • Vasala A, Hytönen VP, Laitinen OH. Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol. 2020;10:308. doi:10.3389/fcimb.2020.00308
  • Islam KS, Shiraj-Um-Mahmuda S, Hazzaz-Bin-Kabir M. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. J Public Health Dev Ctries. 2016;2(3):276–284.
  • Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49–61. doi:10.2147/IDR.S55778
  • Levy SB. Antibiotic resistance: an ecological imbalance. Paper presented at: Ciba Foundation Symposium 207‐Antibiotic Resistance: Origins, Evolution, Selection and Spread: Antibiotic Resistance: Origins, Evolution, Selection and Spread: Ciba Foundation Symposium; 2007.
  • Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res. 2019;169:483–493. doi:10.1016/j.envres.2018.11.040
  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23(4):795. doi:10.3390/molecules23040795
  • Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet World. 2019;12(11):1735–1746. doi:10.14202/vetworld.2019.1735-1746
  • Kyprianou M. Ban on antibiotics as growth promoters in animal feed enters into effect; 2005. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_05_1687. Accessed December 4, 2023.
  • Cox JA, Vlieghe E, Mendelson M, et al. Antibiotic stewardship in low-and middle-income countries: the same but different? Clin Microbiol Infect. 2017;23(11):812–818. doi:10.1016/j.cmi.2017.07.010
  • Kavanagh KT, Abusalem S, Calderon LE. View point: gaps in the current guidelines for the prevention of Methicillin-resistant Staphylococcus aureus surgical site infections. Antimicrob Resist Infect Control. 2018;7(1):112. doi:10.1186/s13756-018-0407-0
  • Huang DB, Magnet S, De Angelis S, et al. Surveillance of iclaprim activity: in vitro susceptibility of Gram-positive skin infection pathogens collected from 2015 to 2016 from North America and Europe. Diagnostic microbiology and infectious disease. Diagn Microbiol Infect Dis. 2019;93(2):154–158. doi:10.1016/j.diagmicrobio.2018.09.002
  • Grillo S, Puig-Asensio M. The effectiveness of combination therapy for treating methicillin-susceptible Staphylococcus aureus bacteremia: a systematic literature review and a meta-analysis. Microorganisms. 2022;10(5):848. doi:10.3390/microorganisms10050848
  • Heger ML, Al-Sayyad B. Ceftaroline and daptomycin combination antibiotic therapy for a methicillin-resistant Staphylococcus aureus liver abscess in a premature infant. J Pediatr Pharmacol Ther. 2022;27(8):754–759. doi:10.5863/1551-6776-27.8.754
  • Blaskovich MA, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA. Developments in glycopeptide antibiotics. ACS Infect Dis. 2018;4(5):715–735. doi:10.1021/acsinfecdis.7b00258
  • Zhao S, Ren S, Jiang T, et al. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol Res. 2019;7(4):630–643. doi:10.1158/2326-6066.CIR-17-0640
  • Davis JS, van Hal S, Tong S. Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Paper presented at: Seminars in respiratory and critical care medicine; 2015.
  • Valderrama M-J, Alfaro M, Rodríguez-Avial I, Baos E, Rodríguez-Avial C, Culebras E. Synergy of linezolid with several antimicrobial agents against linezolid-methicillin-resistant Staphylococcal strains. Antibiotics. 2020;9(8):496. doi:10.3390/antibiotics9080496
  • Ma H, Cheng J, Peng L, Gao Y, Zhang G, Luo Z. Adjunctive rifampin for the treatment of Staphylococcus aureus bacteremia with deep infections: a meta-analysis. PLoS One. 2020;15(3):e0230383. doi:10.1371/journal.pone.0230383
  • Bartash R, Nori P. Beta-lactam combination therapy for the treatment of Staphylococcus aureus and Enterococcus species bacteremia: a summary and appraisal of the evidence. Int J Infect Dis. 2017;63:7–12. doi:10.1016/j.ijid.2017.07.019
  • Creech CB, Al-Zubeidi DN, Fritz SA. Prevention of recurrent staphylococcal skin infections. Infect Dis Clin North Am. 2015;29(3):429–464. doi:10.1016/j.idc.2015.05.007
  • Cardona AF, Wilson SE. Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis. 2015;61(suppl_2):S69–S78. doi:doi:10.1093/cid/civ528
  • Bloom G, Merrett GB, Wilkinson A, Lin V, Paulin S. Antimicrobial resistance and universal health coverage. BMJ Global Health. 2017;2(4):e000518. doi:10.1136/bmjgh-2017-000518
  • Garcia-Graells C, Antoine J, Larsen J, Catry B, Skov R, Denis O. Livestock veterinarians at high risk of acquiring methicillin-resistant Staphylococcus aureus ST398. Epidemiol Infect. 2012;140(3):383–389. doi:10.1017/S0950268811002263
  • Köck R, Loth B, Köksal M, Schulte-Wülwer J, Harlizius J, Friedrich AW. Persistence of nasal colonization with livestock-associated methicillin-resistant Staphylococcus aureus in pig farmers after holidays from pig exposure. Appl Environ Microbiol. 2012;78(11):4046–4047. doi:10.1128/AEM.00212-12
  • Graham DW, Collignon P, Davies J, Larsson DG, Snape J. Underappreciated role of regionally poor water quality on globally increasing antibiotic resistance. Environ Sci Technol. 2014;48(20):11746–11747. doi:10.1021/es504206x
  • Ikhimiukor OO, Odih EE, Donado-Godoy P, Okeke IN. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat Microbiol. 2022;7(6):757–765. doi:10.1038/s41564-022-01124-w
  • Majumder MAA, Rahman S, Cohall D, et al. Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infect Drug Resist. 2020;Volume 13:4713–4738. doi:10.2147/IDR.S290835
  • Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: one health approach. Vet World. 2022;15(3):743–749. doi:10.14202/vetworld.2022.743-749
  • Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi:10.1016/j.mib.2019.10.008
  • Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162. doi:10.4292/wjgpt.v8.i3.162
  • Topka-Bielecka G, Dydecka A, Necel A, et al. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics. 2021;10(2):175. doi:10.3390/antibiotics10020175
  • Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018;4(2):274. doi:10.3934/microbiol.2018.2.274
  • Ajuebor J, Buttimer C, Arroyo-Moreno S, et al. Comparison of Staphylococcus phage K with close phage relatives commonly employed in phage therapeutics. Antibiotics. 2018;7(2):37. doi:10.3390/antibiotics7020037
  • Rahimzadeh G, Gill P, Rezai MS. Characterization of methicillin-resistant Staphylococcus aureus (MRSA) phages from sewage at a tertiary pediatric hospital. Arch Pediatr Infect Dis. 2017;5(1):e39615. doi:10.5812/pedinfect.39615
  • Mohammed-Ali MN, Jamalludeen NM. Isolation and characterization of bacteriophage against methicillin resistant Staphylococcus aureus. J Med Microb Diagn. 2015;5(213):2161. doi:10.4172/2161-0703.1000213
  • Kebriaei R, Lev KL, Stamper KC, Lehman SM, Morales S, Rybak MJ. Bacteriophage AB-SA01 cocktail in combination with antibiotics against MRSA-VISA strain in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2020;65(1). doi:10.1128/AAC.01863-20
  • Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Ann Rev Med. 2022;73(1):197–211. doi:10.1146/annurev-med-080219-122208
  • Wu Y, Wang R, Xu M, et al. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol. 2019;10:2768. doi:10.3389/fmicb.2019.02768
  • Doub JB, Ng VY, Johnson AJ. Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection. Antibiotics. 2020;9(5):241. doi:10.3390/antibiotics9050241
  • Suda T, Hanawa T, Tanaka M, et al. Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection. Sci Rep. 2022;12(1):15656. doi:10.1038/s41598-022-19922-x
  • Mendes JJ, Leandro C, Corte‐Real S, et al. Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen. 2013;21(4):595–603. doi:10.1111/wrr.12056
  • Rodriguez JM, Woodworth BA, Horne BA, Fackler J, Brownstein MJ. Case report: successful use of phage therapy in refractory MRSA chronic rhinosinusitis. Int J Infect Dis. 2022;121:14–16. doi:10.1016/j.ijid.2022.04.049
  • Ferry T, Batailler C, Petitjean C, et al. The potential innovative use of bacteriophages within the DAC(®) hydrogel to treat patients with knee megaprosthesis infection requiring “Debridement Antibiotics and Implant Retention” and soft tissue coverage as salvage therapy. Front Med. 2020;7:342. doi:10.3389/fmed.2020.00342
  • Leszczyński P, Weber-Dabrowska B, Kohutnicka M, Luczak M, Górecki A, Górski A. Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker--case report. Folia microbiologica. 2006;51(3):236–238. doi:10.1007/BF02932128
  • Seed KD, Miller VL. Battling phages: how bacteria defend against viral attack. PLoS Pathog. 2015;11(6):e1004847. doi:10.1371/journal.ppat.1004847
  • Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–128. doi:10.1016/j.biochi.2015.03.025
  • Jurado A, Fernández L, Rodríguez A, García P. Understanding the mechanisms that drive phage resistance in Staphylococci to prevent phage therapy failure. Viruses. 2022;14(5):1061.
  • Lu Y, Lu Y, Li B, et al. StAP1 phage: an effective tool for treating methicillin-resistant Staphylococcus aureus infections. Front Microbiol. 2023;14:1267786.
  • Zhvania P, Hoyle NS, Nadareishvili L, Nizharadze D, Kutateladze M. Phage therapy in a 16-year-old boy with Netherton syndrome. Front Med. 2017;4:94. doi:10.3389/fmed.2017.00094
  • Diallo K, Dublanchet A. Benefits of combined phage-antibiotic therapy for the control of antibiotic-resistant bacteria: a literature review. Antibiotics. 2022;11(7):839. doi:10.3390/antibiotics11070839
  • Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi:10.3390/v10070351
  • McGee LW, Barhoush Y, Shima R, Hennessy M. Phage-resistant mutations impact bacteria susceptibility to future phage infections and antibiotic response. Ecol Evol. 2023;13(1):e9712. doi:10.1002/ece3.9712
  • León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol. 2015;6:343. doi:10.3389/fmicb.2015.00343
  • Samir S, Samir S, Omar H, Hassan EA, Abdelazeem E. Basic guidelines for bacteriophages isolation and characterization. Recent Patents Biotechnol. 2022;16(3):266–280. doi:10.2174/1872208316666220412105822
  • Lin B, Hung A, Li R, et al. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens. Eur J Med Chem. 2022;231:114135. doi:10.1016/j.ejmech.2022.114135
  • Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev. 2023;1–39. doi:10.1080/02648725.2023.2199572
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  • Benfield AH, Henriques ST. Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Front Med Technol. 2020;2:610997. doi:10.3389/fmedt.2020.610997
  • Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48. doi:10.1186/s40779-021-00343-2
  • Moravej H, Moravej Z, Yazdanparast M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24(6):747–767. doi:10.1089/mdr.2017.0392
  • Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines. 2020;8(3). doi:10.3390/vaccines8030517
  • Saeed SI, Mergani A, Aklilu E, Kamaruzzman NF. Antimicrobial peptides: bringing solution to the rising threats of antimicrobial resistance in livestock. Front Vet Sci. 2022;9:851052. doi:10.3389/fvets.2022.851052
  • Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater. 2020;103:52–67. doi:10.1016/j.actbio.2019.12.025
  • Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics. 2020;12(9). doi:10.3390/pharmaceutics12090840
  • Rizzetto G, Gambini D, Maurizi A, et al. Our experience over 20 years: antimicrobial peptides against gram positives, gram negatives, and fungi. Pharmaceutics. 2022;15(1):40. doi:10.3390/pharmaceutics15010040
  • Kang SJ, Nam SH. Engineering approaches for the development of antimicrobial peptide-based antibiotics. Antibiotics. 2022;11(10):1338. doi:10.3390/antibiotics11101338
  • Demirci M, Yigin A, Demir C. Efficacy of antimicrobial peptide LL-37 against biofilm forming Staphylococcus aureus strains obtained from chronic wound infections. Microb Pathog. 2022;162:105368. doi:10.1016/j.micpath.2021.105368
  • Garbacz K, Kamysz W, Piechowicz L. Activity of antimicrobial peptides, alone or combined with conventional antibiotics, against Staphylococcus aureus isolated from the airways of cystic fibrosis patients. Virulence. 2017;8(1):94–100. doi:10.1080/21505594.2016.1213475
  • Ciandrini E, Morroni G, Arzeni D, et al. Antimicrobial Activity of Different Antimicrobial Peptides (AMPs) against clinical Methicillin-resistant Staphylococcus aureus (MRSA). Curr Top Med Chem. 2018;18(24):2116–2126. doi:10.2174/1568026618666181022140348
  • Linares DM, Ross P, Stanton C. Beneficial Microbes: the pharmacy in the gut. Bioengineered. 2016;7(1):11–20. doi:10.1080/21655979.2015.1126015
  • Rueda-Robles A, Rodríguez-Lara A, Meyers MS. Effect of probiotics on host-microbiota in bacterial infections. Pathogens. 2022;11(9):986. doi:10.3390/pathogens11090986
  • Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016;48(4):246–255. doi:10.3109/07853890.2016.1161232
  • Tegegne BA, Kebede B. Probiotics, their prophylactic and therapeutic applications in human health development: a review of the literature. Heliyon. 2022;8(6):e09725. doi:10.1016/j.heliyon.2022.e09725
  • Raheem A, Liang L, Zhang G, Cui S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front Immunol. 2021;12:616713. doi:10.3389/fimmu.2021.616713
  • Silva DR, Sardi J, Pitangui N, Roque SM, Silva A, Rosalen PL. Probiotics as an alternative antimicrobial therapy: current reality and future directions. J Funct Foods. 2020;73:104080. doi:10.1016/j.jff.2020.104080
  • Caselli E, Arnoldo L, Rognoni C, et al. Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: a multicenter study. Infect Drug Resist. 2019;Volume 12:501–510. doi:10.2147/IDR.S194670
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. doi:10.2147/IJN.S121956
  • Nandhini P, Kumar P, Mickymaray S, Alothaim AS, Somasundaram J, Rajan M. Recent developments in Methicillin-Resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics. 2022;11(5). doi:10.3390/antibiotics11050606
  • Moo CL, Yang SK, Yusoff K, et al. Mechanisms of Antimicrobial Resistance (AMR) and alternative approaches to overcome AMR. Curr Drug Discov Technol. 2020;17(4):430–447. doi:10.2174/1570163816666190304122219
  • Truong VK, Truong NP, Rice SA. Antibacterial activity of nanoparticles. Nanomaterials. 2021;11(6). doi:10.3390/nano11061391
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi:10.3390/ijms17091534
  • Mikhailova EO. Silver nanoparticles: mechanism of action and probable bio-application. J Funct Biomater. 2020;11(4):84. doi:10.3390/jfb11040084
  • Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 2021;12:632505. doi:10.3389/fmicb.2021.632505
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Letters. 2012;2(1):32. doi:10.1186/2228-5326-2-32
  • Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics. 2022;11(7). doi:10.3390/antibiotics11070951
  • Hamida RS, Ali MA, Goda DA, Khalil MI, Al-Zaban MI. Novel biogenic silver Nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of Methicillin-Resistant Staphylococcus aureus (MRSA) Strain. Front Bioeng Biotechnol. 2020;8:433. doi:10.3389/fbioe.2020.00433
  • Das B, Dash SK, Mandal D, et al. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian J Chem. 2017;10(6):862–876. doi:10.1016/j.arabjc.2015.08.008
  • Ansari MA, Khan M, Khan AA, Cameotra SS, Alzohairy MA. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 2015;33(1):101–109. doi:10.4103/0255-0857.148402
  • Aslam B, Khurshid M, Arshad MI, et al. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11:1153. doi:10.3389/fcimb.2021.771510