135
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fosfomycin Enhances the Inhibition Ability of Linezolid Against Biofilms of Vancomycin-Resistant Enterococcus faecium in vitro

ORCID Icon, ORCID Icon, , , , & show all
Pages 7707-7719 | Received 01 Nov 2023, Accepted 14 Dec 2023, Published online: 18 Dec 2023

References

  • Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82. doi:10.1016/j.mib.2017.11.030
  • Joshi S, Shallal A, Zervos M. Vancomycin-resistant Enterococci: epidemiology, infection prevention, and control. Infect Dis Clin North Am. 2021;35(4):953–968. doi:10.1016/j.idc.2021.07.002
  • Zoller M, Maier B, Hornuss C, et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care. 2014;18(4):R148. doi:10.1186/cc13984
  • Smith TT, Tamma PD, Do TB, et al. Prolonged linezolid use is associated with the development of linezolid-resistant Enterococcus faecium. Diagn Microbiol Infect Dis. 2018;91(2):161–163. doi:10.1016/j.diagmicrobio.2018.01.027
  • Klare I, Fleige C, Geringer U, et al. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J Glob Antimicrob Resist. 2015;3(2):128–131. doi:10.1016/j.jgar.2015.02.007
  • Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol. 2008;9(4):261–266. doi:10.2174/138920108785161604
  • Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol. 2013;13(5):699–706. doi:10.1016/j.coph.2013.07.004
  • Rogers SA, Huigens RW, Cavanagh J, Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother. 2010;54(5):2112–2118. doi:10.1128/AAC.01418-09
  • Goi´c-Bariši´c I, Radi´c M, Novak A, et al. Vancomycin-resistant Enterococcus faecium COLONIZATION and Clostridium difficile infection in a HEMATOLOGIC patient. Acta Clin Croat. 2020;59(3):523–528. doi:10.20471/acc.2020.59.03.17
  • Ye JJ, Shie SS, Cheng CW, et al. Clinical characteristics and treatment outcomes of vancomycin-resistant Enterococcus faecium bacteremia. J Microbiol Immunol Infect. 2018;51(6):705–716. doi:10.1016/j.jmii.2017.08.025
  • Dijkmans AC, Zacarías NVO, Burggraaf J, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics. 2017;6(4):24. doi:10.3390/antibiotics6040024
  • Tong J, Jiang Y, Xu H, et al. In vitro antimicrobial activity of fosfomycin, rifampin, vancomycin, daptomycin alone and in combination against vancomycin-resistant Enterococci. Drug Des Devel Ther. 2021;15:3049–3055. doi:10.2147/DDDT.S315061
  • Qi C, Xu S, Wu M, et al. Pharmacodynamics of linezolid-plus-fosfomycin against vancomycin-susceptible and -resistant Enterococci in vitro and in vivo of a galleria mellonella larval infection model. Infect Drug Resist. 2019;12:3497–3505. doi:10.2147/IDR.S219117
  • Li Y, Peng Y, Zhang N, et al. Assessing the emergence of resistance in vitro and invivo: linezolid combined with fosfomycin against fosfomycin-sensitive and resistant Enterococcus. Infect Drug Resist. 2022;15:4995–5010. doi:10.2147/IDR.S377848
  • Wang S, Liu H, Mao J, et al. Pharmacodynamics of linezolid plus fosfomycin against vancomycin-resistant Enterococcus faecium in a hollow fiber infection model. Front Microbiol. 2021;12:779885. doi:10.3389/fmicb.2021.779885
  • Tang HJ, Chen CC, Zhang CC, et al. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn Microbiol Infect Dis. 2013;77(3):254–257. doi:10.1016/j.diagmicrobio.2013.07.012
  • Lagatolla C, Mehat JW, La Ragione RM, Luzzati R, Di Bella S. In vitro and in vivo studies of oritavancin and fosfomycin synergism against vancomycin-resistant Enterococcus faecium. Antibiotics. 2022;11(10):1334. doi:10.3390/antibiotics11101334
  • Oliva A, Furustrand Tafin U, Maiolo EM, Jeddari S, Bétrisey B, Trampuz A. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(3):1284–1293. doi:10.1128/AAC.02583-12
  • Zheng JX, Sun X, Lin ZW, et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J Med Microbiol. 2019;68(3):493–502. doi:10.1099/jmm.0.000945
  • Zheng J, Chen Z, Lin Z, et al. Radezolid is more effective than linezolid against planktonic cells and inhibits Enterococcus faecalis biofilm formation. Front Microbiol. 2020;11:196.
  • Luther MK, Arvanitis M, Mylonakis E, LaPlante KL. Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother. 2014;58(8):4612–4620. doi:10.1128/AAC.02790-13
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–122. doi:10.1038/nrd1008
  • Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51–65. doi:10.1080/14787210.2018.1417036
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 30th Informational Supplement. CLSI M100-S30. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • Davis H, Brown R, Ashcraft D, Pankey G. In vitro synergy with fosfomycin plus doxycyclin against linezolid and vancomycin-resistant Enterococcus faecium. J Glob Antimicrob Resist. 2020;22:78–83. doi:10.1016/j.jgar.2020.01.014
  • Paduszynska MA, Greber KE, Paduszynski W, Sawicki W, Kamysz W. Activity of temporin a and short lipopeptides combined with gentamicin against biofilm formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiotics. 2020;9(9):566. doi:10.3390/antibiotics9090566
  • Pettit RK, Weber CA, Pettit GR. Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clinic Microbiol Antimicrob. 2009;8(1):28. doi:10.1186/1476-0711-8-28
  • Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol. 2007;189(22):8257‒8269. doi:10.1128/JB.00645-07
  • Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol. 2019;17(2):82–94. doi:10.1038/s41579-018-0107-z
  • Zheng JX, Wu Y, Lin ZW, et al. Characteristics of and virulence factors associated with biofilm formation in clinical Enterococcus faecalis isolates in China. Front Microbiol. 2017;8:2388. doi:10.3389/fmicb.2017.02388
  • Holmberg A, Mörgelin M, Rasmussen M. Effectiveness of ciprofloxacin or linezolid in combination with rifampicin against Enterococcus faecalis in biofilms. J Antimicrob Chemother. 2012;67(2):433–439. doi:10.1093/jac/dkr477
  • Bari AK, Belalekar TS, Poojary A, Rohra S. Combination drug strategies for biofilm eradication using synthetic and natural agents in KAPE pathogens. Front Cell Infect Microbiol. 2023;13:1155699. doi:10.3389/fcimb.2023.1155699
  • Descourouez JL, Jorgenson MR, Wergin JE, et al. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob Agents Chemother. 2013;57(3):1518–1520. doi:10.1128/AAC.02099-12
  • Hemapanpairoa J, Changpradub D, Thunyaharn S, Santimaleeworagun W. Vancomycin-resistant enterococcal infection in a Thai university hospital: clinical characteristics, treatment outcomes, and synergistic effect. Infect Drug Resist. 2019;12:2049–2057. doi:10.2147/IDR.S208298
  • Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Medicine. 2018;97(36):e12114. doi:10.1097/MD.0000000000012114
  • Dundar H, Brede DA, La RSL, El-Gendy AO, Diep DB, Nes IF. The fsr quorum-sensing system and cognate gelatinase orchestrate the expression and processing of proprotein EF_1097 into the mature antimicrobial peptide enterocin O16. J Bacteriol. 2015;197(13):2112–2121. doi:10.1128/JB.02513-14
  • Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol. 2009;72(4):1022–1036. doi:10.1111/j.1365-2958.2009.06703.x
  • Van TD, Martin MJ, Gilmore MS. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins. 2013;5(5):895–911. doi:10.3390/toxins5050895
  • Süssmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immune. 2000;68(9):4900–4906. doi:10.1128/IAI.68.9.4900-4906.2000
  • Tendolkar PM, Baghdayan AS, Shankar N. Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis. J Bacteriol. 2006;188(6):2063–2072. doi:10.1128/JB.188.6.2063-2072.2006
  • Kristich CJ, Li YH, Cvitkovitch DG, Dunny GM. Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol. 2004;186(1):154–163. doi:10.1128/JB.186.1.154-163.2004
  • Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immune. 2004;72(10):6032–6039. doi:10.1128/IAI.72.10.6032-6039.2004
  • Toledo-Arana A, Valle J, Solano C, et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001;67(10):4538–4545. doi:10.1128/AEM.67.10.4538-4545.2001
  • Leendertse M, Heikens E, Wijnands LM, et al. Enterococcal surface protein transiently aggravates Enterococcus faecium-induced urinary tract infection in mice. J Infect Dis. 2009;200(7):1162–1165. doi:10.1086/605609
  • Nielsen HV, Flores-Mireles AL, Kau AL, et al. Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis. J Bacteriol. 2013;195(19):4484–4495. doi:10.1128/JB.00451-13
  • Nallapareddy SR, Singh KV, Sillanpää J, et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest. 2006;116(10):2799–2807. doi:10.1172/JCI29021