1,036
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review

ORCID Icon, ORCID Icon &
Pages 7515-7545 | Received 11 Aug 2023, Accepted 24 Oct 2023, Published online: 07 Dec 2023

References

  • WHO. Antimicrobial Resistance; 2021.
  • D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–461. doi:10.1038/nature10388
  • Baker S, Thomson N, Weill F-X, et al. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 2018;360(6390):733–738. doi:10.1126/science.aar3777
  • Andersson DI, Balaban NQ, Baquero F, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev. 2020;44(2):171–188. doi:10.1093/femsre/fuaa001
  • Luepke KH, Suda KJ, Boucher H, et al. Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy. 2017;37(1):71–84. doi:10.1002/phar.1868
  • Jensen US, Muller A, Brandt CT, et al. Effect of generics on price and consumption of ciprofloxacin in primary healthcare: the relationship to increasing resistance. J Antimicrob Chemother. 2010;65(6):1286–1291. doi:10.1093/jac/dkq093
  • WHO, Interagency Coordination Group on Antimicrobial Resistance. No time to wait: securing the future from drug-resistant infections, Report to the secretary-general of the united nations; 2019. 1: p. 28.
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-3
  • Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics. 2019;9(2):49. doi:10.3390/diagnostics9020049
  • Wernli D, Jørgensen PS, Morel CM, et al. Mapping global policy discourse on antimicrobial resistance. BMJ Glob Health. 2017;2(2):e000378. doi:10.1136/bmjgh-2017-000378
  • Hwengwere K, Paramel Nair H, Hughes KA, et al. Antimicrobial resistance in Antarctica: is it still a pristine environment? Microbiome. 2022;10(1):1–13. doi:10.1186/s40168-022-01250-x
  • Peixoto RS, Harkins DM, Nelson KE. Advances in microbiome research for animal health. Ann Rev Animal Biosci. 2021;9(1):289–311. doi:10.1146/annurev-animal-091020-075907
  • Baquero F, Coque TM, Martínez J-L, et al. Gene transmission in the one health microbiosphere and the channels of antimicrobial resistance. Front Microbiol. 2019;10:2892. doi:10.3389/fmicb.2019.02892
  • Rillig MC, Mansour I. Microbial ecology: community coalescence stirs things up. Curr Biol. 2017;27(23):R1280–R1282. doi:10.1016/j.cub.2017.10.027
  • Velazquez ME, Galarde-López M, Carrillo-Quiróz B, et al. Antimicrobial resistance: one Health approach. Vet World. 2022;15(3):743. doi:10.14202/vetworld.2022.743-749
  • Karakonstantis S, Kalemaki D. Antimicrobial overuse and misuse in the community in Greece and link to antimicrobial resistance using methicillin-resistant S. aureus as an example. J Infect Public Health. 2019;12(4):460–464. doi:10.1016/j.jiph.2019.03.017
  • Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10(10):1310. doi:10.3390/pathogens10101310
  • Manohar P, Loh B, Leptihn S. Will the overuse of antibiotics during the Coronavirus pandemic accelerate antimicrobial resistance of bacteria? Infect Microbes Dis. 2020;2(3):87. doi:10.1097/IM9.0000000000000034
  • Cantón R, Horcajada JP, Oliver A, et al. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm Infecc Microbiol Clin. 2013;31:3–11. doi:10.1016/S0213-005X(13)70126-5
  • Sulis G, Daniels B, Kwan A, et al. Antibiotic overuse in the primary health care setting: a secondary data analysis of standardised patient studies from India, China and Kenya. BMJ Glob Health. 2020;5(9):e003393. doi:10.1136/bmjgh-2020-003393
  • Naveed M. Antibiotics resistance mechanism. In: Antibiotics and Antimicrobial Resistance Genes in the Environment. Elsevier; 2020:292–312.
  • Tao S. The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol. 2022;2022. doi:10.1155/2022/3348695
  • Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387(10014):168–175. doi:10.1016/S0140-6736(15)00474-2
  • Smyk JM, Szydłowska N, Szulc W, et al. Evolution of Influenza Viruses—Drug Resistance, Treatment Options, and Prospects. Int J Mol Sci. 2022;23(20):12244. doi:10.3390/ijms232012244
  • Van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin. 2016;30(2):377–390. doi:10.1016/j.idc.2016.02.004
  • Subramaniam G, Girish M. Antibiotic resistance—A cause for reemergence of infections. Indian J Pediatr. 2020;87(11):937–944. doi:10.1007/s12098-019-03180-3
  • Vinoth R, Kumar RS, Venkateswaramurthy N. Misuse of Antibiotic during COVID 19 Outbreaks. J Drug Deliv Ther. 2021;11(6–S):181–187. doi:10.22270/jddt.v11i6-S.5102
  • WHO. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization; 2015.
  • Nepal G, Bhatta S. Self-medication with antibiotics in WHO Southeast Asian Region: a systematic review. Cureus. 2018;10(4). doi:10.7759/cureus.2428
  • Rappuoli R, Young P, Ron E, et al. Save the microbes to save the planet. A call to action of the International Union of the Microbiological Societies (IUMS). One Health Outlook. 2023;5(1):1–5. doi:10.1186/s42522-023-00077-2
  • Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: a concern for public health. Microbiologyopen. 2020;9(9):e1035. doi:10.1002/mbo3.1035
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
  • Karkman A, Pärnänen K, Larsson DJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10(1):80. doi:10.1038/s41467-018-07992-3
  • Stanton IC, Bethel A, Leonard AFC, et al. Existing evidence on antibiotic resistance exposure and transmission to humans from the environment: a systematic map. Environ Evid. 2022;11(1):1–24. doi:10.1186/s13750-022-00262-2
  • Almagor J, Temkin E, Benenson I, et al. The impact of antibiotic use on transmission of resistant bacteria in hospitals: insights from an agent-based model. PLoS One. 2018;13(5):e0197111. doi:10.1371/journal.pone.0197111
  • Kumar M, Sarma DK, Shubham S, et al. Futuristic non-antibiotic therapies to combat antibiotic resistance: a review. Front Microbiol. 2021;12:609459. doi:10.3389/fmicb.2021.609459
  • Chia PY, Sengupta S, Kukreja A, et al. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob Resist Infect Control. 2020;9(1):1–11. doi:10.1186/s13756-020-0685-1
  • Smith RP, May HE, AbuOun M, et al. A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. Front Microbiol. 2023;14:700. doi:10.3389/fmicb.2023.1070340
  • Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: challenges and opportunities for hygiene and infection control. Environ Int. 2021;157:106836. doi:10.1016/j.envint.2021.106836
  • Huang L, Liu C, Li Z, et al. Characteristics of Virulent ST5-SCC mec II Methicillin-Resistant Staphylococcus aureus Prevalent in a Surgery Ward. Infect Drug Resist. 2023;Volume 16:3487–3495. doi:10.2147/IDR.S410330
  • Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms. 2019;7(6):180. doi:10.3390/microorganisms7060180
  • He Y, Yuan Q, Mathieu J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water. 2020;3(1):4. doi:10.1038/s41545-020-0051-0
  • Dafale NA, Srivastava S, Purohit HJ. Zoonosis: an emerging link to antibiotic resistance under “one health approach”. Indian J Microbiol. 2020;60:139–152. doi:10.1007/s12088-020-00860-z
  • D’Accolti M, Soffritti I, Mazzacane S, et al. Fighting AMR in the healthcare environment: microbiome-based sanitation approaches and monitoring tools. Int J Mol Sci. 2019;20(7):1535. doi:10.3390/ijms20071535
  • Hooban B, Fitzhenry K, Cahill N, et al. A point prevalence survey of antibiotic resistance in the Irish environment, 2018–2019. Environ Int. 2021;152:106466. doi:10.1016/j.envint.2021.106466
  • Ma L, Yang H, Guan L, et al. Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns. Environ Int. 2022;158:106978. doi:10.1016/j.envint.2021.106978
  • Atta H, Idris SM, Gulumbe BH, et al. Detection of extended spectrum beta-lactamase genes in strains of Escherichia coli and Klebsiella pneumoniae isolated from recreational water and tertiary hospital waste water in Zaria, Nigeria. Int J Environ Health Res. 2022;32(9):2074–2082. doi:10.1080/09603123.2021.1940884
  • Lin J, Peng Y, Ou QT, et al. A molecular epidemiological study of methicillin-resistant Staphylococci environmental contamination in railway stations and coach stations in Guangzhou of China. Lett Appl Microbiol. 2017;64(2):131–137. doi:10.1111/lam.12700
  • Li X, Qiu Y, Yu A, et al. Characteristics of airborne Staphylococcus aureus (including MRSA) in Chinese public buildings. Aerobiologia. 2015;31(1):11–19. doi:10.1007/s10453-014-9342-6
  • Sivaraman G, Muneeb KH, Sudha S, et al. Fish-borne methicillin resistant Staphylococcus haemolyticus carrying atypical staphylococcal cassette chromosome mec (SCCmec) elements. Gene Rep. 2021;22:100982. doi:10.1016/j.genrep.2020.100982
  • Wang Y, Li G, Zhu Q, et al. Occurrence of parabens, triclosan and triclocarban in paired human urine and indoor dust from two typical cities in China and its implications for human exposure. Sci Tot Environ. 2021;786:147485. doi:10.1016/j.scitotenv.2021.147485
  • Liao C, Shi J, Wang X, et al. Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas. Environ Pollut. 2019;253:759–767. doi:10.1016/j.envpol.2019.07.076
  • Wang Z, Gao J, Wang S, et al. Triclocarban shifted the microbial communities and promoted the spread of antibiotic resistance genes in nitrifying granular sludge system. Bioresour Technol. 2022;347:126429. doi:10.1016/j.biortech.2021.126429
  • Exner M, Bhattacharya S, Gebel J, et al. Chemical disinfection in healthcare settings: critical aspects for the development of global strategies. GMS Hyg Infect Control. 2020;15. doi:10.3205/dgkh000371
  • Chawla J, Shrivastav A. Antimicrobial Tolerance in Biofilms, in Application of Biofilms in Applied Microbiology. Elsevier; 2022:235–255.
  • Elekhnawy E, Sonbol F, Abdelaziz A, et al. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. Future J Pharm Sci. 2020;6(1):1–10. doi:10.1186/s43094-020-00119-w
  • Iniguez MM, Avila-Novoa MG, Gutierrez-Lomeli M. Resistance of pathogenic and spoilage microorganisms to disinfectants in the presence of organic matter and their residual effect on stainless steel and polypropylene. J Glob Antimicrob Resist. 2018;14:197–201. doi:10.1016/j.jgar.2018.04.010
  • Merchel B, Wang X, Tagkopoulos I. Biocide-induced emergence of antibiotic resistance in Escherichia coli. Front Microbiol. 2021;12:640923. doi:10.3389/fmicb.2021.640923
  • Mahnert A, Moissl-Eichinger C, Zojer M, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10(1):968. doi:10.1038/s41467-019-08864-0
  • Pokharel S, Shrestha P, Adhikari B. Antimicrobial use in food animals and human health: time to implement ‘One Health’approach. Antimicrob Resist Infect Control. 2020;9:1–5. doi:10.1186/s13756-020-00847-x
  • Koch N, Islam NF, Sonowal S, et al. Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr Res Microbial Sci. 2021;2:100027. doi:10.1016/j.crmicr.2021.100027
  • Liu Z, Wang K, Zhang Y, et al. High prevalence and diversity characteristics of blaNDM, mcr, and blaESBLs harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China. Front Cell Infect Microbiol. 2022;11:1364.
  • Founou LL, Founou RC, Essack SY. Antimicrobial resistance in the farm-to-plate continuum: more than a food safety issue. Future Sci OA. 2021;7(5):FSO692. doi:10.2144/fsoa-2020-0189
  • Jans C, Sarno E, Collineau L, et al. Consumer exposure to antimicrobial resistant bacteria from food at Swiss retail level. Front Microbiol. 2018;9:362. doi:10.3389/fmicb.2018.00362
  • Berman TS, Barnett-Itzhaki Z, Berman T, et al. Antimicrobial resistance in food-producing animals: towards implementing a one health based national action plan in Israel. Isr J Health Policy Res. 2023;12(1):18. doi:10.1186/s13584-023-00562-z
  • Rhouma M, Archambault M, Butaye P. Antimicrobial Use and Resistance in Animals from a One Health Perspective. Vet Sci. 2023;10:319.
  • Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27. doi:10.4103/0976-0105.177703
  • Papich MG. Antimicrobial agent use in small animals what are the prescribing practices, use of PK‐PD principles, and extralabel use in the United States? J Vet Pharmacol Ther. 2021;44(2):238–249. doi:10.1111/jvp.12921
  • Nhung NT, Cuong N, Thwaites G, et al. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: a review. Antibiotics. 2016;5(4):37. doi:10.3390/antibiotics5040037
  • Kim J, Hwang BK, Choi H, et al. Characterization of mcr-1-harboring plasmids from pan drug-resistant Escherichia coli strains isolated from retail raw chicken in South Korea. Microorganisms. 2019;7(9):344. doi:10.3390/microorganisms7090344
  • Díaz-Jiménez D, García-Meniño I, Fernández J, et al. Chicken and Turkey meat: consumer exposure to multidrug-resistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and high-risk lineages such as ST131. Int J Food Microbiol. 2020;331:108750. doi:10.1016/j.ijfoodmicro.2020.108750
  • Deng W, Quan Y, Yang S, et al. Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance. Microb Drug Resist. 2018;24(6):782–791. doi:10.1089/mdr.2017.0127
  • Balemi A, Gumi B, Amenu K, et al. Prevalence of mastitis and antibiotic resistance of bacterial isolates from CMT positive milk samples obtained from dairy cows, camels, and goats in two pastoral districts in Southern Ethiopia. Animals. 2021;11(6):1530. doi:10.3390/ani11061530
  • Prevention, E.C.f.D, et al. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food‐producing animals: joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J. 2017;15(7):e04872. doi:10.2903/j.efsa.2017.4872
  • Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist. 2021;27:101–111. doi:10.1016/j.jgar.2021.08.001
  • Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol. 2019;125:462–466. doi:10.1016/j.fct.2019.01.033
  • Canton L, Lanusse C, Moreno L. Rational pharmacotherapy in infectious diseases: issues related to drug residues in edible animal tissues. Animals. 2021;11(10):2878. doi:10.3390/ani11102878
  • Tufa TB, Gurmu F, Beyi AF, et al. Veterinary medicinal product usage among food animal producers and its health implications in Central Ethiopia. BMC Vet Res. 2018;14(1):1–7. doi:10.1186/s12917-018-1737-0
  • Zhang Y, Gu AZ, Cen T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ Pollut. 2018;237:74–82. doi:10.1016/j.envpol.2018.01.032
  • Ding M, Ye Z, Liu L, et al. Subinhibitory antibiotic concentrations promote the horizontal transfer of plasmid-borne resistance genes from Klebsiellae pneumoniae to Escherichia coli. Front Microbiol. 2022;13:1017092. doi:10.3389/fmicb.2022.1017092
  • Shao S, Hu Y, Cheng J, et al. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol. 2018;38(8):1195–1208. doi:10.1080/07388551.2018.1471038
  • Checcucci A, Trevisi P, Luise D, et al. Exploring the animal waste resistome: the spread of antimicrobial resistance genes through the use of livestock manure. Front Microbiol. 2020;11:1416. doi:10.3389/fmicb.2020.01416
  • Ljubojević D, Pelić M, Puvača N, et al. Resistance to tetracycline in Escherichia coli isolates from poultry meat: epidemiology, policy and perspective. Worlds Poult Sci J. 2017;73(2):409–417. doi:10.1017/S0043933917000216
  • Mahmoud MA, Abdel-Mohsein HS. Hysterical tetracycline in intensive poultry farms accountable for substantial gene resistance, health and ecological risk in Egypt-manure and fish. Environ Pollut. 2019;255:113039. doi:10.1016/j.envpol.2019.113039
  • Tóth AG, Tóth I, Rózsa B, et al. Canine saliva as a possible source of antimicrobial resistance genes. Antibiotics. 2022;11(11):1490. doi:10.3390/antibiotics11111490
  • Rothrock J, James M, Castleberry L, et al. Antibiotic resistance, antimicrobial residues, and bacterial community diversity in pasture-raised poultry, swine, and beef cattle manures. J Anim Sci. 2021;99(8):kab144. doi:10.1093/jas/skab144
  • Vines J, Cuscó A, Napp S, et al. Transmission of similar mcr-1 carrying plasmids among different Escherichia coli lineages isolated from livestock and the farmer. Antibiotics. 2021;10(3):313. doi:10.3390/antibiotics10030313
  • Aworh MK, Abiodun-Adewusi O, Mba N, et al. Prevalence and risk factors for faecal carriage of multidrug resistant Escherichia coli among slaughterhouse workers. Sci Rep. 2021;11(1):13362. doi:10.1038/s41598-021-92819-3
  • Bai H, He L-Y, Wu D-L, et al. Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environ Int. 2022;158:106927. doi:10.1016/j.envint.2021.106927
  • Gwenzi W, Shamsizadeh Z, Gholipour S, et al. The air-borne antibiotic resistome: occurrence, health risks, and future directions. Sci Total Environ. 2022;804:150154. doi:10.1016/j.scitotenv.2021.150154
  • Zhou G, Qiu X, Wu X, et al. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. J Hazard Mater. 2021;408:124883. doi:10.1016/j.jhazmat.2020.124883
  • Hernando AS, Coque TM, Baquero F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019;4(9):1432–1442. doi:10.1038/s41564-019-0503-9
  • Freitag C, Michael GB, Li J, et al. Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet Microbiol. 2018;219:63–69. doi:10.1016/j.vetmic.2018.03.028
  • Tian M, He X, Feng Y, et al. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics. 2021;10(5):539. doi:10.3390/antibiotics10050539
  • Larsson DJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–269. doi:10.1038/s41579-021-00649-x
  • Smith WP, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol. 2023;21:519–534.
  • Mulder M Antimicrobial Use and Antimicrobial Resistance in Community-Acquired Urinary Tract Infections; 2022.
  • Dame ZT, Rahman M, Islam T. Bacilli as sources of agrobiotechnology: recent advances and future directions. Green Chem Lett Rev. 2021;14(2):246–271. doi:10.1080/17518253.2021.1905080
  • Anwar M, Iqbal Q, Saleem F. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Rev Anti Infect Ther. 2020;18(8):697–699. doi:10.1080/14787210.2020.1754797
  • Wall B, Mateus AL, Marshall L, et al., Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Food and Agriculture Organization of the United Nations, 2016.
  • Ayele Y, Mamu M. Assessment of knowledge, attitude and practice towards disposal of unused and expired pharmaceuticals among community in Harar city, Eastern Ethiopia. J Pharm Policy Pract. 2018;11:1–7. doi:10.1186/s40545-018-0155-9
  • Bashaar M, et al. Disposal practices of unused and expired pharmaceuticals among general public in Kabul. BMC Public Health. 2017;17:1–8. doi:10.1186/s12889-016-3954-4
  • Stanton IC, Murray AK, Zhang L, et al. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun Biol. 2020;3(1):467. doi:10.1038/s42003-020-01176-w
  • Wang K, Zhuang T, Su Z, et al. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts. Sci Tot Environ. 2021;788:147811. doi:10.1016/j.scitotenv.2021.147811
  • Madikizela LM, Nuapia YB, Chimuka L, et al. Target and Suspect Screening of Pharmaceuticals and their Transformation Products in the Klip River, South Africa, using Ultra‐High–Performance Liquid Chromatography–Mass Spectrometry. Environ Toxicol Chem. 2022;41(2):437–447. doi:10.1002/etc.5265
  • Ulvi A, Aydın S, Aydın ME. Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. Environ Sci Pollut Res. 2022;29(50):75609–75625. doi:10.1007/s11356-022-21131-y
  • Zalewska M, Błażejewska A, Czapko A, et al. Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Front Microbiol. 2021;12:640. doi:10.3389/fmicb.2021.610656
  • Zhao F, Yang L, Chen L, et al. Bioaccumulation of antibiotics in crops under long-term manure application: occurrence, biomass response and human exposure. Chemosphere. 2019;219:882–895. doi:10.1016/j.chemosphere.2018.12.076
  • Gwenzi W, Musiyiwa K, Mangori L. Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. J Environ Chem Eng. 2020;8(1):102220. doi:10.1016/j.jece.2018.02.028
  • Yan Z, Xiong C, Liu H, et al. Sustainable agricultural practices contribute significantly to one health. J Sustain Agric Environ. 2022;1(3):165–176. doi:10.1002/sae2.12019
  • Yang Q, Ren S, Niu T, et al. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables. Environ Sci Pollut Res. 2014;21(2):1231–1241. doi:10.1007/s11356-013-1994-1
  • Varlet V, Bouvet A, Cadas H, et al. Toward safer thanatopraxy cares: formaldehyde‐releasers use. J Anat. 2019;235(5):863–872. doi:10.1111/joa.13047
  • Paiga P, Delerue C. Determination of pharmaceuticals in groundwater collected in five cemeteries’ areas (Portugal). Sci Tot Environ. 2016;569:16–22. doi:10.1016/j.scitotenv.2016.06.090
  • Silva RBPD, Campos MC, Silva LS, et al. Concentration of heavy metals in soils under cemetery occupation in Amazonas, Brazil. Soil Sediment Contam. 2020;29(2):192–208.
  • Gwenzi W. The ‘thanato-resistome’-The funeral industry as a potential reservoir of antibiotic resistance: early insights and perspectives. Sci Total Environ. 2020;749:141120. doi:10.1016/j.scitotenv.2020.141120
  • Abia ALK, Ubomba-Jaswa E, Schmidt C, et al. Where did they come from—multi-drug resistant pathogenic Escherichia coli in a cemetery environment? Antibiotics. 2018;7(3):73. doi:10.3390/antibiotics7030073
  • Miller SA, Ferreira JP, LeJeune JT. Antimicrobial use and resistance in plant agriculture: a one health perspective. Agriculture. 2022;12(2):289. doi:10.3390/agriculture12020289
  • Ramakrishnan B, Venkateswarlu K, Sethunathan N, et al. Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci Tot Environ. 2019;654:177–189. doi:10.1016/j.scitotenv.2018.11.041
  • Rangasamy K, Athiappan M, Devarajan N, et al. Pesticide degrading natural multidrug resistance bacterial flora. Microb Pathog. 2018;114:304–310. doi:10.1016/j.micpath.2017.12.013
  • Kurenbach B, Marjoshi D, Amábile-Cuevas CF, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2, 4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. MBio. 2015;6(2):e00009–15. doi:10.1128/mBio.00009-15
  • Lu J, Jin M, Nguyen SH, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ Int. 2018;118:257–265. doi:10.1016/j.envint.2018.06.004
  • Zhao Y, Cocerva T, Cox S, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Tot Environ. 2019;656:512–520. doi:10.1016/j.scitotenv.2018.11.372
  • Rangasamy K, Athiappan M, Devarajan N, et al. Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathog. 2017;105:153–165. doi:10.1016/j.micpath.2017.02.011
  • Zeballos-Gross D, Rojas-Sereno Z, Salgado-Caxito M, et al. The role of gulls as reservoirs of antibiotic resistance in aquatic environments: a scoping review. Front Microbiol. 2021;12:703886. doi:10.3389/fmicb.2021.703886
  • Ruppe E, Ghozlane A, Tap J, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol. 2019;4(1):112–123. doi:10.1038/s41564-018-0292-6
  • Di Lallo G, D’Andrea MM, Sennati S, et al. Evidence of another anthropic impact on Iguana delicatissima from the Lesser Antilles: the presence of antibiotic resistant enterobacteria. Antibiotics. 2021;10(8):885. doi:10.3390/antibiotics10080885
  • Vittecoq M, Godreuil S, Prugnolle F, et al. Antimicrobial resistance in wildlife. J Appl Ecol. 2016;53(2):519–529. doi:10.1111/1365-2664.12596
  • Khan SA, Imtiaz MA, Sayeed MA, et al. Antimicrobial resistance pattern in domestic animal-wildlife-environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BMC Vet Res. 2020;16:1–13. doi:10.1186/s12917-020-02519-9
  • Atterby C, Börjesson S, Ny S, et al. ESBL-producing Escherichia coli in Swedish gulls—a case of environmental pollution from humans? PLoS One. 2017;12(12):e0190380. doi:10.1371/journal.pone.0190380
  • Lee S, Fan P, Liu T, et al. Transmission of antibiotic resistance at the wildlife-livestock interface. Commun Biol. 2022;5(1):585. doi:10.1038/s42003-022-03520-8
  • Desvars-Larrive A, Ruppitsch W, Lepuschitz S, et al. Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017. Eurosurveillance. 2019;24(32):1900149. doi:10.2807/1560-7917.ES.2019.24.32.1900149
  • Sobur A, Haque ZF, Sabuj AA, et al. Molecular detection of multidrug and colistin-resistant Escherichia coli isolated from house flies in various environmental settings. Future Microbiol. 2019;14(10):847–858. doi:10.2217/fmb-2019-0053
  • Obeng-Nkrumah N, et al. Household cockroaches carry CTX-M-15-, OXA-48-and NDM-1-producing enterobacteria, and share beta-lactam resistance determinants with humans. BMC Microbiol. 2019;19:1–11. doi:10.1186/s12866-018-1372-8
  • Seifert JD. Antimicrobial Stewardship and its Effects on Resistant Organisms. 2022.
  • Majumder MAA, Rahman S, Cohall D, et al. Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infect Drug Resist. 2020;Volume 13:4713–4738. doi:10.2147/IDR.S290835
  • Donà D, Barbieri E, Daverio M, et al. Implementation and impact of pediatric antimicrobial stewardship programs: a systematic scoping review. Antimicrob Resist Infect Control. 2020;9:1–12.
  • Kiersnowska Z, Lemiech-Mirowska E, Michałkiewicz M, et al. Hand hygiene as the basic method of reducing Clostridium difficile infections (CDI) in a hospital environment. Ann Agri Environ Med. 2021;28(4):535–540. doi:10.26444/aaem/131121
  • Bock L, Wand M, Sutton J. Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect. 2016;93(1):42–48. doi:10.1016/j.jhin.2015.12.019
  • Weber DJ, Kanamori H, Rutala WA. ‘No touch’technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016;29(4):424–431. doi:10.1097/QCO.0000000000000284
  • Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci Tot Environ. 2019;669:785–797. doi:10.1016/j.scitotenv.2019.03.162
  • Bassegoda A, Ivanova K, Ramon E, et al. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol. 2018;102(5):2075–2089. doi:10.1007/s00253-018-8776-0
  • Paulus GK, Hornstra LM, Alygizakis N, et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int J Hyg Environ Health. 2019;222(4):635–644. doi:10.1016/j.ijheh.2019.01.004
  • Musoke D, Namata C, Lubega GB, et al. The role of Environmental Health in preventing antimicrobial resistance in low-and middle-income countries. Environ Health Prev Med. 2021;26(1):1–6. doi:10.1186/s12199-021-01023-2
  • Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24(1):10–19. doi:10.1038/nm.4465
  • Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance (AMR). Hum Vaccin Immunother. 2018;14(9):2142–2149. doi:10.1080/21645515.2018.1476814
  • Palai S, Derecho CM, Kesh SS, et al. Prebiotics, probiotics, synbiotics and its importance in the management of diseases. Func Foods Nutraceut. 2020;173–196.
  • Anadon A, Ares I, Martínez-Larrañaga MR, et al. Prebiotics and probiotics in feed and animal health. Nutraceut Vet Med. 2019;261–285.
  • Yan Y, Li Y, Zhang Z, et al. Advances of peptides for antibacterial applications. Biointerfaces. 2021;202:111682. doi:10.1016/j.colsurfb.2021.111682
  • Helmy YA, Taha-Abdelaziz K, Hawwas HA, et al. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics. 2023;12(2):274.
  • Uchil RR, Kohli GS, KateKhaye VM, Swami OC. Strategies to combat antimicrobial resistance. J Clin Diagn Res. 2014;8(7):ME01.
  • Serwecinska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020;12(12):3313. doi:10.3390/w12123313
  • Florez-Cuadrado D, et al. Antimicrobial resistance in the food chain in the European Union. Adv Food Nutr Res. 2018;86:115–136.
  • Christou A, Agüera A, Bayona JM, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes–a review. Water Res. 2017;123:448–467. doi:10.1016/j.watres.2017.07.004
  • Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6(1):1–8. doi:10.1186/s13756-017-0208-x
  • Jacobs TG, Robertson J, van den Ham HA, et al. Assessing the impact of law enforcement to reduce over-The-counter (OTC) sales of antibiotics in low-and middle-income countries; a systematic literature review. BMC Health Serv Res. 2019;19(1):1–15. doi:10.1186/s12913-019-4359-8
  • Bank W. Drug-Resistant Infections: A Threat to Our Economic Future. World Bank; 2017.
  • WHO. Antimicrobial Resistance Multi-Partner Trust Fund annual report 2021. 2022: Food & Agriculture Org.
  • More SJ. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir Vet J. 2020;73(1):2. doi:10.1186/s13620-019-0154-4
  • Fernandes V, Cunha E, Nunes T, et al. Antimicrobial Resistance of Clinical and Commensal Escherichia coli Canine Isolates: profile Characterization and Comparison of Antimicrobial Susceptibility Results According to Different Guidelines. Vet Sci. 2022;9(6):284. doi:10.3390/vetsci9060284
  • Mahmoud SF, Fayez M, Swelum AA, et al. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis. Vet Sci. 2022;9(5):239. doi:10.3390/vetsci9050239
  • Mazinska B, Struzycka I, Hryniewicz W, Gupta V. Surveys of public knowledge and attitudes with regard to antibiotics in Poland: did the European Antibiotic Awareness Day campaigns change attitudes? PLoS One. 2017;12(2):e0172146. doi:10.1371/journal.pone.0172146
  • Mathew P, Sivaraman S, Chandy S. Communication strategies for improving public awareness on appropriate antibiotic use: bridging a vital gap for action on antibiotic resistance. J Family Med Prim Care. 2019;8(6):1867. doi:10.4103/jfmpc.jfmpc_263_19
  • OIE, W.O.f.A.H. Terrestrial Animal Health Code. Paris: World Organization for Animal Health; 2016.
  • Hygiene DOF, Bergšpica I, Kaprou G, et al. Identification of risk factors and hotspots of antibiotic resistance along the food chain using next‐generation sequencing. EFSA J. 2020;18(Suppl 1):e181107. doi:10.2903/j.efsa.2020.e181107
  • Ruppe E, Bengtsson-Palme J, Charretier Y, Schrenzel J. How next-generation sequencing can address the antimicrobial resistance challenge. AMR Control. 2019;20:60–66.
  • Kasimanickam V, Kasimanickam M, Kasimanickam R. Antibiotics use in food animal production: escalation of antimicrobial resistance: where are we now in combating AMR? Med Sci. 2021;9(1):14. doi:10.3390/medsci9010014
  • Rahman MM, Alam Tumpa MA, Zehravi M, et al. An overview of antimicrobial stewardship optimization: the use of antibiotics in humans and animals to prevent resistance. Antibiotics. 2022;11(5):667. doi:10.3390/antibiotics11050667
  • Huber N, Andraud M, Sassu EL, et al. What is a biosecurity measure? A definition proposal for animal production and linked processing operations. One Health. 2022;15:100433. doi:10.1016/j.onehlt.2022.100433
  • Postma M, Backhans A, Collineau L, et al. Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porcine Health Manag. 2016;2(1):1–11. doi:10.1186/s40813-016-0028-z
  • Callaway TR, Lillehoj H, Chuanchuen R, et al. Alternatives to antibiotics: a symposium on the challenges and solutions for animal health and production. Antibiotics. 2021;10(8):1024. doi:10.3390/antibiotics10050471
  • Farha A, Yang QQ, Kim G, et al. Tannis as an alternative to antibiotics. Food Biosci. 2020;38:100751.
  • Magrys A, Olender A, Tchorzewska D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch Microbiol. 2021;203(5):2257–2268. doi:10.1007/s00203-021-02248-z
  • Khan RU, Khan A, Naz S, et al. Potential applications of Moringa oleifera in poultry health and production as alternative to antibiotics: a review. Antibiotics. 2021;10(12):1540. doi:10.3390/antibiotics10121540
  • Abdel-Tawab H, Abdel-Haleem HM, Abdel-Baki A-AS, et al. Anticoccidial and antioxidant activities of Moringa oleifera leaf extract on murine intestinal eimeriosis. Acta Parasitol. 2020;65(4):823–830. doi:10.2478/s11686-020-00219-w
  • Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e216–e230. doi:10.1016/S1473-3099(20)30327-3
  • Dicks LM, Dreyer L, Smith C, et al. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Front Microbiol. 2018;9:2297. doi:10.3389/fmicb.2018.02297
  • Marutescu LG, Jaga M, Postolache C, et al. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front Microbiol. 2022;3489.
  • Gurmessa B, Pedretti EF, Cocco S, et al. Manure anaerobic digestion effects and the role of pre-and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Sci Tot Environ. 2020;721:137532. doi:10.1016/j.scitotenv.2020.137532
  • Oliver JP, Gooch CA, Lansing S, et al. Invited review: fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci. 2020;103(2):1051–1071. doi:10.3168/jds.2019-16778
  • Subirats J, Murray R, Scott A, et al. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Sci Total Environ. 2020;746:141113. doi:10.1016/j.scitotenv.2020.141113
  • Klumper U, Recker M, Zhang L, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019;13(12):2927–2937. doi:10.1038/s41396-019-0483-z
  • Chen Q-L, An X-L, Zheng B-X, et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol Lett. 2019;1(1–2):3–13. doi:10.1007/s42832-019-0011-0
  • Iskandar K, Molinier L, Hallit S, et al. Surveillance of antimicrobial resistance in low-and middle-income countries: a scattered picture. Antimicrob Resist Infect Control. 2021;10(1):1–19. doi:10.1186/s13756-021-00931-w
  • Sharma A, Singh A, Dar MA, et al. Menace of antimicrobial resistance in LMICs: current surveillance practices and control measures to tackle hostility. J Infect Public Health. 2022;15(2):172–181. doi:10.1016/j.jiph.2021.12.008
  • Jaeger FN, Bechir M, Harouna M, et al. Challenges and opportunities for healthcare workers in a rural district of Chad. BMC Health Serv Res. 2018;18(1):1–11. doi:10.1186/s12913-017-2799-6
  • Loosli K, Davis A, Muwonge A, et al. Addressing antimicrobial resistance by improving access and quality of care—a review of the literature from East Africa. PLoS Negl Trop Dis. 2021;15(7):e0009529. doi:10.1371/journal.pntd.0009529
  • Simegn W, Moges G, Aslam MS. Awareness and knowledge of antimicrobial resistance and factors associated with knowledge among adults in Dessie City, Northeast Ethiopia: community-based cross-sectional study. PLoS One. 2022;17(12):e0279342. doi:10.1371/journal.pone.0279342
  • Chukwu EE, Oladele DA, Enwuru CA, et al. Antimicrobial resistance awareness and antibiotic prescribing behavior among healthcare workers in Nigeria: a national survey. BMC Infect Dis. 2021;21(1):1–12. doi:10.1186/s12879-020-05689-x
  • Gulumbe BH, Haruna UA, Almazan J, et al. Combating the menace of antimicrobial resistance in Africa: a review on stewardship, surveillance and diagnostic strategies. Biol Proced Online. 2022;24(1):1–13. doi:10.1186/s12575-022-00182-y
  • Wozniak TM, Cuningham W, Ledingham K, et al. Contribution of socio-economic factors in the spread of antimicrobial resistant infections in Australian primary healthcare clinics. J Glob Antimicrob Resist. 2022;30:294–301. doi:10.1016/j.jgar.2022.06.005
  • Allel K, García P, Labarca J, et al. Socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Rev Panam Salud Publica. 2020;44. doi:10.26633/RPSP.2020.30
  • Mambula G, Nanjebe D, Munene A, et al. Practices and challenges related to antibiotic use in paediatric treatment in hospitals and health centres in Niger and Uganda: a mixed methods study. Antimicrob Resist Infect Control. 2023;12(1):67. doi:10.1186/s13756-023-01271-7
  • Chua AQ, Verma M, Hsu LY, et al. An analysis of national action plans on antimicrobial resistance in Southeast Asia using a governance framework approach. Lancet Reg Health–Western Pac. 2021;7:100084. doi:10.1016/j.lanwpc.2020.100084
  • Gongal G, Ofrin RH, de Balogh K. Operationalization of One Health and tripartite collaboration in the Asia-Pacific region. WHO South-East Asia J Public Health. 2020;9(1):21–25.
  • Laborda P, Sanz-García F, Ochoa-Sánchez LE, et al. Wildlife and antibiotic resistance. Front Cell Infect Microbiol. 2022;12:568.