138
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical Efficacy of Ulinastatin Combined with Azithromycin in the Treatment of Severe Pneumonia in Children and the Effects on Inflammatory Cytokines and Oxidative Stress: A Retrospective Cohort Study

, , , , , , , & show all
Pages 7165-7174 | Received 04 Jul 2023, Accepted 17 Oct 2023, Published online: 07 Nov 2023

References

  • Lee YC, Chang CH, Lee WJ, et al. Altered chemokine profile in refractory Mycoplasma pneumoniae pneumonia infected children. J Microbiol Immunol Infect. 2021;54(4):673–679. doi:10.1016/j.jmii.2020.03.030
  • Jones BE, Herman DD, Dela Cruz CS, et al. Summary for clinicians: clinical practice guideline for the diagnosis and treatment of community-acquired Pneumonia. Ann Am Thorac Soc. 2020;17(2):133–138. doi:10.1513/AnnalsATS.201909-704CME
  • Kamel AM, Monem MSA, Sharaf NA, Magdy N, Farid SF. Efficacy and safety of azithromycin in Covid-19 patients: a systematic review and meta-analysis of randomized clinical trials. Rev Med Virol. 2022;32(1):e2258. doi:10.1002/rmv.2258
  • Zhang R, Ma J, Zheng P, Zheng R, Meng X, Wang Y. Ulinastatin plus biapenem for severe pneumonia in the elderly and its influence on pulmonary function and inflammatory cytokines. Am J Transl Res. 2021;13(5):5027–5034.
  • Patel A, Joseph J, Periasamy H, Mokale S. Azithromycin in combination with ceftriaxone reduces systemic inflammation and provides survival benefit in a murine model of polymicrobial sepsis. Antimicrob Agents Chemother. 2018;62(9). doi:10.1128/AAC.00752-18
  • Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–245.
  • Wang H, Zhao M, Liu S, Wang X. Efficacy and safety of reduning injection combined with azithromycin in the treatment of mycoplasma pneumonia among children: a systematic review and meta-analysis. Phytomedicine. 2022;106:154402. doi:10.1016/j.phymed.2022.154402
  • Xiao Z, Jiang Y, Gao X, et al. Comparison of the ameliorative effects of Qingfei Tongluo formula and azithromycin on Mycoplasma pneumoniae pneumonia. J Nat Med. 2017;71(4):685–692. doi:10.1007/s11418-017-1098-1
  • Inoue K, Takano H. Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opin Investig Drugs. 2010;19(4):513–520. doi:10.1517/13543781003649533
  • Luo X, Huan L, Lin F, et al. Ulinastatin ameliorates IL-1β-induced cell dysfunction in human nucleus pulposus cells via Nrf2/NF-κB pathway. Oxid Med Cell Longev. 2021;2021:5558687. doi:10.1155/2021/5558687
  • Cao C, Yin C, Shou S, et al. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. Shock (Augusta, Ga). 2018;50(5):595–605. doi:10.1097/SHK.0000000000001104
  • Zhang X, Zhu Z, Jiao W, Liu W, Liu F, Zhu X. Ulinastatin treatment for acute respiratory distress syndrome in China: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2019;19(1):196. doi:10.1186/s12890-019-0968-6
  • Ni X. Guideline for diagnosis and treatment of community-acquired pneumonia in children (2019 edition). Clin Med Res Pract. 2019;4(06):201.
  • Jinlan P. Efficacy observation and follow-up of two administration methods for Mycoplasma pneumonia. Primary Med Forum. 2013;17(23):3003–3004.
  • Wu X, Jiao W, Chen J, Tao Y, Zhang J, Wang Y. Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting oxidative stress and neuroinflammation via ROS/MAPK/Nrf2 signaling pathway. Acta Cir Bras. 2022;37(6):e370606. doi:10.1590/acb370606
  • Li C, Ma D, Chen M, et al. Ulinastatin attenuates LPS-induced human endothelial cells oxidative damage through suppressing JNK/c-Jun signaling pathway. Biochem Biophys Res Commun. 2016;474(3):572–578. doi:10.1016/j.bbrc.2016.04.104
  • Tsolia MN, Psarras S, Bossios A, et al. Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. Clin Infect Dis. 2004;39(5):681–686. doi:10.1086/422996
  • Toikka P, Juvén T, Virkki R, Leinonen M, Mertsola J, Ruuskanen O. Streptococcus pneumoniae and Mycoplasma pneumoniae coinfection in community acquired pneumonia. Arch Dis Child. 2000;83(5):413–414. doi:10.1136/adc.83.5.413
  • Tsai TA, Tsai CK, Kuo KC, Yu HR. Rational stepwise approach for Mycoplasma pneumoniae pneumonia in children. J Microbiol Immunol Infect. 2021;54(4):557–565. doi:10.1016/j.jmii.2020.10.002
  • Pereyre S, Goret J, Bébéar C. Mycoplasma pneumoniae: current knowledge on macrolide resistance and treatment. Front Microbiol. 2016;7:974. doi:10.3389/fmicb.2016.00974
  • Liu X, Lin Z, Yin X. Pellino2 accelerate inflammation and pyroptosis via the ubiquitination and activation of NLRP3 inflammation in model of pediatric pneumonia. Int Immunopharmacol. 2022;110:108993. doi:10.1016/j.intimp.2022.108993
  • Shimizu T. Inflammation-inducing factors of mycoplasma pneumoniae. Front Microbiol. 2016;7:414. doi:10.3389/fmicb.2016.00414
  • Pritchard KA Jr, Jing X, Teng M, et al. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One. 2022;17(8):e0269564. doi:10.1371/journal.pone.0269564
  • Walenna NF, Kurihara Y, Chou B, Ishii K, Soejima T, Hiromatsu K. Chlamydia pneumoniae infection-induced endoplasmic reticulum stress causes fatty acid-binding protein 4 secretion in murine adipocytes. J Biol Chem. 2020;295(9):2713–2723. doi:10.1074/jbc.RA119.010683
  • Zhang Z, Dou H, Tu P, et al. Serum cytokine profiling reveals different immune response patterns during general and severe Mycoplasma pneumoniae pneumonia. Front Immunol. 2022;13:1088725. doi:10.3389/fimmu.2022.1088725
  • Li J, Luu LDW, Wang X, et al. Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect. 2022;11(1):593–605. doi:10.1080/22221751.2022.2036582
  • Gualdoni GA, Lingscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. Sci Rep. 2015;5:12016. doi:10.1038/srep12016
  • Piacentini GL, Peroni DG, Bodini A, et al. Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc. 2007;28(2):194–198. doi:10.2500/aap.2007.28.2958
  • Andrada AC, Azuma MM, Furusho H, et al. Immunomodulation mediated by azithromycin in experimental periapical inflammation. J Endod. 2020;46(11):1648–1654. doi:10.1016/j.joen.2020.07.028
  • Jain S, Durugkar S, Saha P, Gokhale SB, Naidu VGM, Sharma P. Effects of intranasal azithromycin on features of cigarette smoke-induced lung inflammation. Eur J Pharmacol. 2022;915:174467. doi:10.1016/j.ejphar.2021.174467
  • Murphy BS, Sundareshan V, Cory TJ, Hayes D, Anstead MI, Feola DJ. Azithromycin alters macrophage phenotype. J Antimicrob Chemother. 2008;61(3):554–560. doi:10.1093/jac/dkn007
  • Varenyiova Z, Rojas-Hernandez LS, Spano J, et al. Azithromycin promotes proliferation, and inhibits inflammation in nasal epithelial cells in primary ciliary dyskinesia. Sci Rep. 2023;13(1):14453. doi:10.1038/s41598-023-41577-5
  • Hall IH, Schwab UE, Ward ES, Butts JD, Wolford ET, Ives TJ. Disposition and intracellular activity of azithromycin in human THP-1 acute monocytes. Int J Antimicrob Agents. 2002;20(5):348–360. doi:10.1016/S0924-8579(02)00187-5
  • Liu S, Xu J, Gao Y, et al. Multi-organ protection of ulinastatin in traumatic cardiac arrest model. World J Emerg Surg. 2018;13:51. doi:10.1186/s13017-018-0212-3
  • Umeadi C, Kandeel F, Al-Abdullah IH. Ulinastatin is a novel protease inhibitor and neutral protease activator. Transplant Proc. 2008;40(2):387–389. doi:10.1016/j.transproceed.2008.01.034
  • Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi:10.1038/s41392-020-00312-6
  • Tan YY, Zhou HQ, Lin YJ, et al. FGF2 is overexpressed in asthma and promotes airway inflammation through the FGFR/MAPK/NF-κB pathway in airway epithelial cells. Milit Med Res. 2022;9(1):7. doi:10.1186/s40779-022-00366-3
  • Behl T, Rana T, Alotaibi GH, et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother. 2022;146:112545. doi:10.1016/j.biopha.2021.112545
  • Chen X, Li X, Zhang W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism. 2018;83:256–270. doi:10.1016/j.metabol.2018.03.004
  • Xiao A, Hongwei L, Yan C, Wang Y, Hailong LI. Research progress of traditional Chinese medicine compound and active ingredients regulating NFkB/MAPKs/JNK signaling pathway to mediate inflammatory response and antiatherosclerosis. J Trad Chin Med. 2019;47(06):109–114.
  • Ju M, He H, Chen S, et al. Ulinastatin ameliorates LPS‑induced pulmonary inflammation and injury by blocking the MAPK/NF‑κB signaling pathways in rats. Mol Med Rep. 2019;20(4):3347–3354. doi:10.3892/mmr.2019.10561
  • Li J, Shao R, Xie Q, et al. Ulinastatin promotes macrophage efferocytosis and ameliorates lung inflammation via the ERK5/Mer signaling pathway. FEBS Open Bio. 2022;12(8):1498–1508. doi:10.1002/2211-5463.13461
  • van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(4):425–435. doi:10.1002/ejhf.1320
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616.
  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797. doi:10.1155/2016/7432797
  • Wang M, Li J, Dong S, et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part Fibre Toxicol. 2020;17(1):23. doi:10.1186/s12989-020-00353-3
  • Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi:10.1038/s12276-022-00736-w
  • Hasenauer A, Bédat B, Parapanov R, et al. Effects of cold or warm ischemia and ex-vivo lung perfusion on the release of damage associated molecular patterns and inflammatory cytokines in experimental lung transplantation. J Heart Lung Transpl. 2021;40(9):905–916. doi:10.1016/j.healun.2021.05.015
  • Franklin TC, Xu C, Duman RS. Depression and sterile inflammation: essential role of danger associated molecular patterns. Brain Behav Immun. 2018;72:2–13. doi:10.1016/j.bbi.2017.10.025
  • Yang X-Y, Song J, Hou S-K, et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells. Int Immunopharmacol. 2020;81:106265. doi:10.1016/j.intimp.2020.106265