311
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mycobacterium tuberculosis Sub-Lineage 4.2.2/SIT149 as Dominant Drug-Resistant Clade in Northwest Ethiopia 2020–2022: In-silico Whole-Genome Sequence Analysis

ORCID Icon, , ORCID Icon, , , , , , ORCID Icon, , , , ORCID Icon & show all
Pages 6859-6870 | Received 30 Jul 2023, Accepted 09 Oct 2023, Published online: 26 Oct 2023

References

  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment -Drug-Resistant Tuberculosis Treatment 2022 Update. Geneva: World Health Organization; 2022.
  • Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med. 2015;5(9):a017863. doi:10.1101/cshperspect.a017863
  • Alemu A, Bitew ZW, Worku T, Gamtesa DF, Alebel A. Predictors of mortality in patients with drug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One. 2021;16(6):e0253848. doi:10.1371/journal.pone.0253848
  • World Health Organization. Global Tuberculosis Report 2022. Geneva: World Health Organization; 2022.
  • Reta MA, Tamene BA, Abate BB, et al. Mycobacterium tuberculosis drug resistance in Ethiopia: an updated systematic review and meta-analysis. Trop Med Int Health. 2022;7(10):300. doi:10.3390/tropicalmed7100300
  • Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011;66(7):1417–1430. doi:10.1093/jac/dkr173
  • Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354–373. doi:10.1093/femsre/fux011
  • Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet. 2013;29(3):160–169. doi:10.1016/j.tig.2012.11.005
  • Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(4):202–213. doi:10.1038/nrmicro.2018.8
  • Al-Ghafli H, Kohl TA, Merker M, et al. Drug-resistance profiling and transmission dynamics of multidrug-resistant Mycobacterium tuberculosis in Saudi Arabia revealed by whole genome sequencing. Infect Drug Resist. 2018;11:2219. doi:10.2147/IDR.S181124
  • Nguyen VAT, Bañuls A-L, Tran THT, et al. Mycobacterium tuberculosis lineages and anti-tuberculosis drug resistance in reference hospitals across Viet Nam. BMC Microbiol. 2016;16:1–9. doi:10.1186/s12866-016-0784-6
  • Zenteno-Cuevas R, Munro-Rojas D, Pérez-Martínez D, et al. Genetic diversity and drug susceptibility of Mycobacterium tuberculosis in a city with a high prevalence of drug resistant tuberculosis from Southeast of Mexico. BMC Infect Dis. 2021;21:1–12. doi:10.1186/s12879-021-06904-z
  • Bainomugisa A, Lavu E, Pandey S, et al. Evolution and spread of a highly drug resistant strain of Mycobacterium tuberculosis in Papua New Guinea. BMC Infect Dis. 2022;22(1):437. doi:10.1186/s12879-022-07414-2
  • Tan JL, Simbun A, Chan K-G, Ngeow YF. Genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis from Malaysia. Scientific Data. 2020;7(1):135. doi:10.1038/s41597-020-0475-x
  • Ndungu PW, Kariuki S, Revathi G, Niemann S, Niemann S. Mycobacteria Interspersed repetitive units-variable number of tandem repeat, spoligotyping and drug resistance of isolates from pulmonary tuberculosis patients in Kenya. Advan Microbiol. 2017;7(3):205–216. doi:10.4236/aim.2017.73017
  • Kidenya BR, Mshana SE, Fitzgerald DW, Ocheretina O. Genotypic drug resistance using whole-genome sequencing of Mycobacterium tuberculosis clinical isolates from North-western Tanzania. Tuberculosis. 2018;109:97–101. doi:10.1016/j.tube.2018.02.004
  • Ssengooba W, Meehan CJ, Lukoye D, et al. Whole genome sequencing to complement tuberculosis drug resistance surveys in Uganda. Infect Genet Evol. 2016;40:8–16. doi:10.1016/j.meegid.2016.02.019
  • Keikha M, Majidzadeh M. Beijing genotype of Mycobacterium tuberculosis is associated with extensively drug-resistant tuberculosis: a global analysis. New Microbes and New Infections. 2021;43:100921. doi:10.1016/j.nmni.2021.100921
  • Merker M, Blin C, Mona S, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47(3):242–249. doi:10.1038/ng.3195
  • Welekidan LN, Yimer SA, Skjerve E, et al. Whole genome sequencing of drug resistant and drug susceptible Mycobacterium tuberculosis isolates from Tigray region, Ethiopia. Front Microbiol. 2021;12:743198. doi:10.3389/fmicb.2021.743198
  • Worku G, Gumi B, Girma M, et al. Drug sensitivity of clinical isolates of Mycobacterium tuberculosis and its association with bacterial genotype in the Somali region, Eastern Ethiopia. Front Public Health. 2022;10:942618. doi:10.3389/fpubh.2022.942618
  • Diriba G, Kebede A, Tola HH, et al. Mycobacterial Lineages Associated with Drug Resistance in Patients with Extrapulmonary Tuberculosis in Addis Ababa, Ethiopia. Tuberc Res Treat. 2021;2021:1–7. doi:10.1155/2021/5239529
  • Ayalew S, Wegayehu T, Taye H, et al. Drug resistance conferring mutation and genetic diversity of Mycobacterium tuberculosis isolates in tuberculosis lymphadenitis Patients; Ethiopia. Infect Drug Resist;2021. 575–584. doi:10.2147/IDR.S298683
  • Tessema B, Beer J, Merker M, et al. Molecular epidemiology and transmission dynamics of Mycobacterium tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest Ethiopia. BMC Infect Dis. 2013;13:131. doi:10.1186/1471-2334-13-131
  • Yimer SA, Namouchi A, Zegeye ED, et al. Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7. BMC Evol Biol. 2016;16(1):1–10. doi:10.1186/s12862-016-0715-z
  • Comas I, Hailu E, Kiros T, et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa. Curr Bio. 2015;25(24):3260–3266. doi:10.1016/j.cub.2015.10.061
  • Firdessa R, Berg S, Hailu E, et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19(3):460. doi:10.3201/eid1903.120256
  • David S, Mateus A, Duarte EL, et al. Determinants of the sympatric host-pathogen relationship in tuberculosis. PLoS One. 2015;10(11):e0140625. doi:10.1371/journal.pone.0140625
  • Walker TM, Miotto P, Köser CU, et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe. 2022;3(4):e265–e73. doi:10.1016/S2666-5247(21)00301-3
  • World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance. Geneva: World Health Organization; 2021.
  • Gurvitz A, Hiltunen JK, Kastaniotis AJ. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74(16):5078–5085. doi:10.1128/AEM.00655-08
  • Perdigão J, Macedo R, Ribeiro A, Brum L, Portugal I. Genetic characterisation of the ethambutol resistance-determining region in Mycobacterium tuberculosis: prevalence and significance of embB306 mutations. Int J Antimicrob Agents. 2009;33(4):334–338. doi:10.1016/j.ijantimicag.2008.09.021
  • Juréen P, Werngren J, Toro J-C, Hoffner S. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008;52(5):1852–1854. doi:10.1128/AAC.00110-08
  • Spies FS, Ribeiro AW, Ramos DF, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol. 2011;49(7):2625–2630. doi:10.1128/JCM.00168-11
  • Mekonnen D, Munshea A, Nibret E, et al. Comparative whole genome sequence analysis of mycobacterium tuberculosis isolated from pulmonary tuberculosis and tuberculous lymphadenitis patients in Northwest Ethiopia. Front Microbiol. 2023;14:1211267. doi:10.3389/fmicb.2023.1211267
  • Kent PT. Public Health Mycobacteriology: A Guide for the Level III Laboratory. US Department of Health and Human Services, Public Health Service, Centers; 1985.
  • Salman H, Siddiqi SR-G. MGIT TM Procedure Manual. USA and Germany: FIND Diagnostic; 2006.
  • Votintseva AA, Pankhurst LJ, Anson LW, et al. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol. 2015;53(4):1137–1143. doi:10.1128/JCM.03073-14
  • NZYtech. NZY Tissue gDNA Isolation kit Portuga; 2023. Available from: file:///C:/Users/Daniel%20m/Downloads/MB135_PB_V2101%20(1).pdf. Accessed October 12, 2023.
  • Corporation P. DNA Purification. Global; 2023.
  • Modi A, Vai S, Caramelli D, Lari M. The Illumina Sequencing Protocol and the NovaSeq 6000 System. Bacterial Pangenomics: Methods and Protocols. Springer; 2021:15–42.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi:10.1089/cmb.2012.0021
  • Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. doi:10.1093/bioinformatics/btt086
  • Kohl TA, Utpatel C, Schleusener V, et al. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018;6:e5895. doi:10.7717/peerj.5895
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Coll F, McNerney R, Guerra-Assunção JA, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5(1):1–5. doi:10.1038/ncomms5812
  • Homolka S, Projahn M, Feuerriegel S, et al. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One. 2012;7(7):e39855. doi:10.1371/journal.pone.0039855
  • Bradley P, Gordon NC, Walker TM, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun. 2015;6(1):1–15. doi:10.1038/ncomms10063
  • Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi:10.1093/nar/gkf436
  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690. doi:10.1093/bioinformatics/btl446
  • Shea J, Halse TA, Kohlerschmidt D, et al. Low-level rifampin resistance and rpoB mutations in Mycobacterium tuberculosis: an analysis of whole-genome sequencing and drug susceptibility test data in New York. J Clin Microbiol. 2021;59(4):e01885–20. doi:10.1128/JCM.01885-20
  • Jagielski T, Bakuła Z, Brzostek A, et al. Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrob Agents Chemother. 2018;62(10):e01093–18. doi:10.1128/AAC.01093-18
  • Napier G, Campino S, Phelan JE, Clark TG. Large-scale genomic analysis of Mycobacterium tuberculosis reveals extent of target and compensatory mutations linked to multi-drug resistant tuberculosis. Sci Rep. 2023;13(1):1–9. doi:10.1038/s41598-023-27516-4
  • Shen X, Shen G-M, Wu J, et al. Association between embB codon 306 mutations and drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51(7):2618–2620. doi:10.1128/AAC.01516-06
  • Wong SY, Lee JS, Kwak HK, et al. Mutations in gidB confer low-level streptomycin resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(6):2515–2522. doi:10.1128/AAC.01814-10
  • Mokrousov I. The quiet and controversial: ural family of Mycobacterium tuberculosis. Infect Genet Evol. 2012;12(4):619–629. doi:10.1016/j.meegid.2011.09.026
  • Shuaib YA, Utpatel C, Kohl TA, et al. Origin and global expansion of Mycobacterium tuberculosis Complex lineage 3. Genes. 2022;13(6):990. doi:10.3390/genes13060990
  • Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 2012;44(1):106–110. doi:10.1038/ng.1038
  • Trauner A, Borrell S, Reither K, Gagneux S. Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs. 2014;74(10):1063–1072. doi:10.1007/s40265-014-0248-y
  • Pasipanodya JG, Moonan PK, Vecino E, et al. Allopatric tuberculosis host–pathogen relationships are associated with greater pulmonary impairment. Infect Genet Evol. 2013;16:433–440. doi:10.1016/j.meegid.2013.02.015
  • Gagneux S, DeRiemer K, Van T, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–2873. doi:10.1073/pnas.0511240103
  • Borrell S, Gagneux S. Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect. 2011;17(6):815–820. doi:10.1111/j.1469-0691.2011.03556.x