266
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event

ORCID Icon & ORCID Icon
Pages 507-529 | Received 26 Oct 2023, Accepted 23 Jan 2024, Published online: 07 Feb 2024

References

  • Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. doi:10.1093/cid/ciw353
  • Munro S, Baker D. Reducing missed oral care opportunities to prevent non-ventilator associated hospital acquired pneumonia at the Department of Veterans Affairs. Appl Nurs Res. 2018;44:48–53. doi:10.1016/j.apnr.2018.09.004
  • Hickey SM, Giwa AO. Mechanical Ventilation. Treasure Island (FL): StatPearls Publishing; 2023.
  • Antalová N, Klučka J, Říhová M, Poláčková S, Pokorná A, Štourač P. VAPprevention in pediatric patients: narrative review. Children. 2022;9(10):1540. doi:10.3390/children9101540
  • Charles MP, Kali A, Easow JM, et al. Ventilator-associated pneumonia. Australas Med J. 2014;7(8):334–344. doi:10.4066/AMJ.2014.2105
  • Papazian L, Klompas M, Luyt CE. VAPin adults: a narrative review. Intensive Care Med. 2020;46(5):888–906. doi:10.1007/s00134-020-05980-0
  • American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. doi:10.1164/rccm.200405-644ST
  • Seguin P, Laviolle B, Dahyot-Fizelier C, et al. Effect of oropharyngeal povidone-iodine preventive oral care on VAP in severely brain-injured or cerebral hemorrhage patients: a multicenter, randomized controlled trial. Crit Care Med. 2014;42(1):1–8. doi:10.1097/CCM.0b013e3182a2770f
  • Herkel T, Uvizl R, Doubravska L, et al. Epidemiology of hospital-acquired pneumonia: results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(3):448–455. doi:10.5507/bp.2016.014
  • Giuliano KK, Baker D, Quinn B. The epidemiology of nonventilator hospital-acquired pneumonia in the United States. Am J Infect Control. 2018;46(3):322–327. doi:10.1016/j.ajic.2017.09.005
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. doi:10.1056/NEJMoa1306801
  • Cai B, Echols R, Magee G, et al. Prevalence of carbapenem-resistant gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis. 2017;4(3):ofx176. doi:10.1093/ofid/ofx176
  • Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit Care. 2016;20(1):221. doi:10.1186/s13054-016-1392-4
  • Timsit JF, Esaied W, Neuville M, Bouadma L, Mourvllier B. Update on ventilator-associated pneumonia. F1000Res. 2017;6:2061. doi:10.12688/f1000research.12222.1
  • Arayasukawat P, So-Ngern A, Reechaipichitkul W, Chumpangern W, Arunsurat I, Ratanawatkul P. Microorganisms, and clinical outcomes of early- and late-onset VAPat Srinagarind Hospital, a tertiary center in Northeastern Thailand. BMC Pulm Med. 2021;21(1):47. doi:10.1186/s12890-021-01415-8
  • Čiginskienė A, Dambrauskienė A, Rello J, Adukauskienė D. VAPdue to drug-resistant Acinetobacter baumannii: risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality. medicina. 2019;55(2):49. doi:10.3390/medicina55020
  • Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin Infect Dis. 2022;74(12):2089–2114. doi:10.1093/cid/ciab1013
  • Drwiega EN, Rodvold KA. Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: an Update. Clin Pharmacokinet. 2022;61(1):17–46. doi:10.1007/s40262-021-01061-7
  • Eljaaly K, Bidell MR, Gandhi RG, et al. Colistin nephrotoxicity: meta-analysis of randomized controlled trials. Open Forum Infect Dis. 2021;8(2):ofab026. doi:10.1093/ofid/ofab026
  • Aydemir H, Akduman D, Piskin N, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect. 2013;141(6):1214–1222. doi:10.1017/S095026881200194X
  • Segala FV, Bavaro DF, Di Gennaro F, et al. Impact of SARS-CoV-2 Epidemic on antimicrobial resistance: a literature review. Viruses. 2021;13(11):2110. doi:10.3390/v13112110
  • Vincent JL, Sakr Y, Singer M, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478–1487. doi:10.1001/jama.2020.2717
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-3
  • Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. A novel algorithm to analyze epidemiology and outcomes of carbapenem resistance among patients with hospital-acquired and ventilator-associated pneumonia: a retrospective cohort study. Chest. 2019;155(6):1119–1130. doi:10.1016/j.chest.2018.12.024
  • Beijerinck M. Pigmenten als oxydatieproducten gevormd door bacterien. Versl Koninklijke Akad Wetensch Amsterdam. 1911;19:1092–1103.
  • Brisou J, Prevot AR. Etudes de systématique bactérienne. Ann Inst Pasteur. 1954;86(6):722–728.
  • Baumann P, Doudoroff M, Stanier RY. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol. 1968;95(5):1520–1541. doi:10.1128/jb.95.5.1520-1541
  • Bouvet PJ, Grimont PA. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended description of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol. 1986;36:228–240.
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi:10.1128/CMR.00058-07
  • LPSN.dsmz.de; 2023. Available from: https://www.bacterio.net/genus/acinetobacter. Accessed September 10, 2023.
  • Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol. 1992;30(10):2680–2685. doi:10.1128/jcm.30.10.2680-2685.1992
  • Nemec A, Krizova L, Maixnerova M, Sedo O, Brisse S, Higgins PG. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol. 2015;65(Pt3):934–942. doi:10.1099/ijs.0.000043
  • Osgaya C, Marí-Almirall M, Van Assche A, et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int J Syst Evol Microbiol. 2016;66(10):4105–4111. doi:10.1099/ijsem.0.001318
  • Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: transforming Acinetobacter baumannii into a yet more dangerous menace. Biomolecules. 2020;10(5):720. doi:10.3390/biom10050720
  • Visca P, Seifert H, Towner KJ. Acinetobacter infection-an emerging threat to human health. IUBMB Life. 2011;63(12):1048–1054. doi:10.1002/iub.534
  • Rossau R, Van Landschoot A, Gillis M, De Ley J. Taxonomy of Moraxellaceae fam. nov., a New bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int J Syst Evolut Microbiol. 1991;41:310–319. doi:10.1099/00207713-41-2-310
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter Infections: a century of challenges. Clin Microbiol Rev. 2017;30(1):409–447. doi:10.1128/CMR.00058-16
  • Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. Acinetobacter baumannii: an ancient commensal with weapons of a pathogen. Pathogens. 2021;10(4):387. doi:10.3390/pathogens1004
  • Vijayakumar S, Biswas I, Veeraraghavan B. Accurate identification of clinically important Acinetobacter spp.: an update. Future Sci OA. 2019;5(6):FSO395. doi:10.2144/fsoa-2018-0127
  • Li Y, Yang X, Zhao W. Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol. 2017;22(6):585–608. doi:10.1177/2472630317727519
  • Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–263. doi:10.1128/CMR.00117-13
  • Lee YT, Turton JF, Chen TL, et al. First identification of blaOXA-51-like in non-baumannii Acinetobacter spp. J Chemother. 2009;21(5):514–520. doi:10.1179/joc.2009.21.5.514
  • Tjernberg I, Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS. 1989;97(7):595–605. doi:10.1111/j.1699-0463.1989.tb00449.x
  • Misbah S, Hassan H, Yusof MY, Hanifah YA, AbuBakar S. Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing. Singapore Med J. 2005;46(9):461–464.
  • Šedo O, Nemec A, Křížová L, Kačalová M, Zdráhal Z. Improvement of MALDI-TOF MS profiling for the differentiation of species within the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Syst Appl Microbiol. 2013;36(8):572–578. doi:10.1016/j.syapm.2013.08.001
  • Dortet L, Potron A, Bonnin RA, et al. Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep. 2018;8(1):16910. doi:10.1038/s41598-018-35041-y
  • Wang Q, Zhou Y, Li S, et al. Real-time fluorescence loop mediated isothermal amplification for the detection of Acinetobacter baumannii. PLoS One. 2013;8(7):e66406. doi:10.1371/journal.pone.0066406
  • Cheng X, Yang J, Wang M, et al. Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay. AMB Express. 2019;9(1):30. doi:10.1186/s13568-019-0754-0
  • Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26(2):101–112. doi:10.1264/jsme2me10179
  • Amorim AM, Nascimento JD. Acinetobacter: an underrated foodborne pathogen? J Infect Dev Ctries. 2017;11(2):111–114. doi:10.3855/jidc.8418
  • Carvalheira A, Silva J, Teixeira P. Acinetobacter spp. in food and drinking water - A review. Food Microbiol. 2021;95:103675. doi:10.1016/j.fm.2020.103675
  • Carvalheira A, Casquete R, Silva J, Teixeira P. Prevalence and antimicrobial susceptibility of Acinetobacter spp. isolated from meat. Int J Food Microbiol. 2017;243:58–63. doi:10.1016/j.ijfoodmicro.2016.12.001
  • Lund BM. Provision of microbiologically safe food for vulnerable people in hospitals, care homes and in the community. Food Control. 2019;97:535–547. doi:10.1016/j.foodcont
  • Rodríguez-Baño J, Cisneros JM, Fernández-Cuenca F, et al. Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect Control Hosp Epidemiol. 2004;25(10):819–824. doi:10.1086/502302
  • Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148–165. doi:10.1128/CMR.9.2.148
  • Li Y, Ge H, Zhou H, et al. Impact of environmental cleaning on the colonization and infection rates of multidrug-resistant Acinetobacter baumannii in patients within the intensive care unit in a tertiary hospital. Antimicrob Resist Infect Control. 2021;10(1):4. doi:10.1186/s13756-020-00870-y
  • Biderman P, Bugaevsky Y, Ben-Zvi H, Bishara J. Multidrug-resistant Acinetobacter baumannii infections in lung transplant patients in the cardiothoracic intensive care unit. Clin Transplant. 2015;29(9):756–762. doi:10.1111/ctr.12575
  • Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102. doi:10.1038/nrmicro.2017.148
  • Alouane T, Uwingabiye J, Lemnouer A, et al. First whole-genome sequences of two multidrug-resistant Acinetobacter baumannii Strains Isolated from a Moroccan Hospital Floor. Genome Announc. 2017;5(18):e00298–17. doi:10.1128/genomeA.00298-17
  • Lupo A, Haenni M, Madec JY. Antimicrobial resistance in Acinetobacter spp. And Pseudomonas spp. Microbiol Spectr. 2018;6:3. doi:10.1128/microbiolspec.ARBA-0007-2017
  • Krol V, Hamid NS, Cunha BA. Neurosurgically related nosocomial Acinetobacter baumannii meningitis: report of two cases and literature review. J Hosp Infect. 2009;71(2):176–180. doi:10.1016/j.jhin.2008.09.018
  • Peacock SJ, Parkhill J, Brown NM. Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology. 2018;164(10):1213–1219. doi:10.1099/mic.0.000700
  • Joly-Guillou M-L, Brun-Buisson C. Epidemiology of Acinetobacter spp.: surveillance and management of outbreaks. In: Acinetobacter. CRC Press; 2020:28,71–100. doi:10.1201/9781003069263-4
  • Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014;71(3):292–301. doi:10.1111/2049-632X.12125
  • Ma C, McClean S. Mapping Global Prevalence of Acinetobacter baumannii and Recent Vaccine Development to Tackle It. Vaccines. 2021;9(6):570. doi:10.3390/vaccines9060570
  • Gautam D, Dolma KG, Khandelwal B, et al. Acinetobacter baumannii: an overview of emerging multidrug-resistant pathogen. Med J Malaysia. 2022;77(3):357–370.
  • Colquhoun JM, Rather PN. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front Cell Infect Microbiol. 2020;10:253. doi:10.3389/fcimb.2020.00253
  • Garnacho-Montero J, Gutiérrez-Pizarraya A, Díaz-Martín A, et al. Acinetobacter baumannii in critically ill patients: molecular epidemiology, clinical features and predictors of mortality. Enferm Infecc Microbiol Clin. 2016;34(9):551–558. doi:10.1016/j.eimc.2015.11.018
  • López-Hernández S, Alarcón T, López-Brea M. Carbapenem resistance mediated by beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. Eur J Clin Microbiol Infect Dis. 1998;17(4):282–285. doi:10.1007/BF01699988
  • Husni RN, Goldstein LS, Arroliga AC, et al. Risk factors for an outbreak of multi-drug-resistant Acinetobacter nosocomial pneumonia among intubated patients. Chest. 1999;115(5):1378–1382. doi:10.1378/chest.115.5.1378
  • Garnacho-Montero J, Ortiz-Leyba C, Fernández-Hinojosa E, et al. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med. 2005;31(5):649–655. doi:10.1007/s00134-005-2598-0
  • Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122(1):262–268. doi:10.1378/chest.122.1.262
  • Sader HS, Castanheira M, Mendes RE, Flamm RK. Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015-17). J Antimicrob Chemother. 2018;73(11):3053–3059. doi:10.1093/jac/dky279
  • Saleem M, Syed Khaja AS, Hossain A, et al. Molecular characterization and antibiogram of Acinetobacter baumannii clinical isolates recovered from the patients with ventilator-associated pneumonia. Healthcare. 2022;10(11):2210. doi:10.3390/healthcare10112210
  • Royer S, Faria AL, Seki LM, et al. Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with VAPin an adult intensive care unit at a university hospital. Braz J Infect Dis. 2015;19(4):350–357. doi:10.1016/j.bjid.2015.03.009
  • Koulenti D, Lisboa T, Brun-Buisson C, et al. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37(8):2360–2368. doi:10.1097/CCM.0b013e3181a037ac
  • Bassetti M, Righi E, Vena A, Graziano E, Russo A, Peghin M. Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug- resistant/extensively drug-resistant/pandrug-resistant bacteria. Curr Opin Crit Care. 2018;24(5):385–393. doi:10.1097/MCC.0000000000000534
  • Behera B, Mahapatra A, Kunjan Pillai JS, et al. Infection-Related ventilator-associated complication and possible VAPamong mechanically ventilated patients of adult medical and surgical intensive care units. J Lab Physicians. 2022;15(1):45–47. doi:10.1055/s-0042-1750076
  • He Q, Wang W, Zhu S, et al. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: an observational study. Crit Care. 2021;25(1):44. doi:10.1186/s13054-021-03484-x
  • Kanafani ZA, Zahreddine N, Tayyar R, et al. Multi-drug resistant Acinetobacter species: a seven-year experience from a tertiary care center in Lebanon. Antimicrob Resist Infect Control. 2018;7:9. doi:10.1186/s13756-017-0297-6
  • Hoang Quoc C. Carbapenemase genes and multidrug resistance of Acinetobacter baumannii: a cross sectional study of patients with pneumonia in southern Vietnam. Antibiotics. 2019;8(3):148. doi:10.3390/antibiotics8030148
  • Gedefie A, Demsis W, Ashagrie M, et al. Acinetobacter baumannii Biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist. 2021;14:3711–3719. doi:10.2147/IDR.S332051
  • Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012;3(3):243–250. doi:10.4161/viru.19700
  • Bouadma L, Sonneville R, Garrouste-Orgeas M, et al. Ventilator-associated events: prevalence, outcome, and relationship with ventilator-associated pneumonia. Crit Care Med. 2015;43(9):1798–1806. doi:10.1097/CCM.0000000000001091
  • Nowak J, Zander E, Stefanik D, et al. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with VAPin Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2017;72(12):3277–3282. doi:10.1093/jac/dkx322
  • Almomani BA, McCullough A, Gharaibeh R, Samrah S. Incidence, and predictors of 14-day mortality in multidrug-resistant Acinetobacter baumannii in ventilator-associated pneumonia. J Infect Dev Ctries. 2015;9(12):1323–1330. doi:10.3855/jidc.6812
  • Ziółkowski G, Pawłowska I, Krawczyk L, Wojkowska-Mach J. Antibiotic consumption versus the prevalence of multidrug-resistant Acinetobacter baumannii and Clostridium difficile infections at an ICU from 2014-2015. J Infect Public Health. 2018;11(5):626–630. doi:10.1016/j.jiph.2018.02.003
  • Özgür ES, Horasan ES, Karaca K, Ersöz G, Naycı Atış S, Kaya A. VAPdue to extensive drug-resistant Acinetobacter baumannii: risk factors, clinical features, and outcomes. Am J Infect Control. 2014;42(2):206–208. doi:10.1016/j.ajic.2013.09.003
  • Ju M, Hou D, Chen S, et al. Risk factors for mortality in ICU patients with Acinetobacter baumannii ventilator-associated pneumonia: impact of bacterial cytotoxicity. J Thorac Dis. 2018;10(5):2608–2617. doi:10.21037/jtd.2018.04.86
  • Pei Y, Huang Y, Pan X, et al. Nomogram for predicting 90-day mortality in patients with Acinetobacter baumannii-caused hospital-acquired and VAPin the respiratory intensive care unit. J Int Med Res. 2023;51(3):3000605231161481. doi:10.1177/03000605231161481
  • Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect. 2014;20(5):416–423. doi:10.1111/1469-0691.12363
  • Mohd Sazlly Lim S. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and VAPand its associated mortality: a systematic review and meta-analysis. J Infect. 2019;79(6):593–600. doi:10.1016/j.jinf.2019.09.012
  • Du X, Xu X, Yao J, et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am J Infect Control. 2019;47(9):1140–1145. doi:10.1016/j.ajic.2019.03.003
  • Adukauskiene D, Ciginskiene A, Adukauskaite A, Koulenti D, Rello J. Clinical features and outcomes of monobacterial and polybacterial episodes of VAPdue to multidrug-resistant Acinetobacter baumannii. Antibiotics. 2022;11(7):892. doi:10.3390/antibiotics11070892
  • Dexter C, Murray GL, Paulsen IT, Peleg AY. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti Infect Ther. 2015;13(5):567–573. doi:10.1586/14787210.2015.1025055
  • Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5(12):939–951. doi:10.1038/nrmicro1789
  • Villegas MV, Hartstein AI. Acinetobacter outbreaks, 1977-2000. Infect Control Hosp Epidemiol. 2003;24(4):284–295. doi:10.1086/502205
  • Monterrubio-Villar J, González-Velasco C, Valdezate-Ramos S, Córdoba-López A, Villalón-Panzano P, Saéz-Nieto JA. Outbreak of multiresistant Acinetobacter baumannii in a polyvalent intensive care unit: clinical, epidemiological analysis and PFGE-printing evolution. Eur J Clin Microbiol Infect Dis. 2009;28(10):1281–1284. doi:10.1007/s10096-009-0777-6
  • Araújo lima AV, da Silva SM. Occurrence and diversity of intra- and interhospital drug-resistant and biofilm-forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist. 2020;26(7):802–814. doi:10.1089/mdr.2019.0214
  • Schulte B, Goerke C, Weyrich P, et al. Clonal spread of meropenem-resistant Acinetobacter baumannii strains in hospitals in the Mediterranean region and transmission to South-west Germany. J Hosp Infect. 2005;61(4):356–357. doi:10.1016/j.jhin.2005.05.009
  • Meumann EM, Anstey NM, Currie BJ, et al. Genomic epidemiology of severe community-onset Acinetobacter baumannii infection. Microb Genom. 2019;5(3):e000258. doi:10.1099/mgen.0.000258
  • Jia H, Sun Q, Ruan Z, Xie X. Characterization of a small plasmid carrying the carbapenem resistance gene blaOXA-72 from community-acquired Acinetobacter baumannii sequence type 880 in China. Infect Drug Resist. 2019;12:1545–1553. doi:10.2147/IDR.S202803
  • Sharma AK, Dhasmana N, Dubey N, et al. Bacterial virulence factors: secreted for survival. Indian J Microbiol. 2017;57(1):1–10. doi:10.1007/s12088-016-0625-1
  • Kumar S, Anwer R, Azzi A. Virulence potential and treatment options of multidrug-resistant (MDR) Acinetobacter baumannii. Microorganisms. 2021;9(10):2104. doi:10.3390/microorganisms9102104
  • Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;13(7):55. doi:10.3389/fcimb.2017.00055
  • Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020;9(3):119. doi:10.3390/antibiotics9030119
  • McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37(2):130–155. doi:10.1111/j.1574-6976.2012.00344.x
  • Smith SG, Mahon V, Lambert MA, Fagan RP. A molecular Swiss army knife: ompA structure, function and expression. FEMS Microbiol Lett. 2007;273(1):1–11. doi:10.1111/j.1574-6968.2007.00778.x
  • Smani Y, Dominguez-Herrera J, Pachón J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii. J Infect Dis. 2013;208(10):1561–1570. doi:10.1093/infdis/jit386
  • Rumbo C, Tomás M, Fernández Moreira E, et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun. 2014;82(11):4666–4680. doi:10.1128/IAI.02034-14
  • Zhu LJ, Chen XY, Hou PF. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii. J Clin Lab Anal. 2019;33(8):e22976. doi:10.1002/jcla.22976
  • Sato Y, Unno Y, Kawakami S, Ubagai T, Ono Y. Virulence characteristics of Acinetobacter baumannii clinical isolates vary with the expression levels of omps. J Med Microbiol. 2017;66(2):203–212. doi:10.1099/jmm.0.000394
  • Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based quantitative proteomic analysis of Acinetobacter baumannii under hypoxia and normoxia reveals the role of OmpW as a virulence factor. Microbiol Spectr. 2022;10(2):e0232821. doi:10.1128/spectrum.02328-21
  • Uppalapati SR, Sett A, Pathania R. The Outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020;11:589234. doi:10.3389/fmicb.2020.589234
  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;64:163–184. doi:10.1146/annurev.micro.091208.073413
  • Jun SH, Lee JH, Kim BR, et al. Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS One. 2013;8(8):e71751. doi:10.1371/journal.pone.0071751
  • Nho JS, Jun SH, Oh MH, et al. Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microb Pathog. 2015;81:39–45. doi:10.1016/j.micpath.2015.03.012
  • Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(7):3084–3090. doi:10.1128/AAC.00929-10
  • Huang W, Yao Y, Long Q, et al. Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One. 2014;9(6):e100727. doi:10.1371/journal.pone.0100727
  • Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther. 2022;47(11):1875–1884. doi:10.1111/jcpt.13787
  • Knapp S, Wieland CW, Florquin S, et al. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med. 2006;173(1):122–129. doi:10.1164/rccm.200505-730OC
  • Rossi E, Longo F, Barbagallo M, et al. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol. 2016;11(3):335–349. doi:10.2217/fmb.15.153
  • Haseley SR, Pantophlet R, Brade L, Holst O, Brade H. Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter junii strain 65. Eur J Biochem. 1997;245(2):477–481. doi:10.1111/j.1432-1033.1997.t01-1-00477.x
  • Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 2015;11(2):e1004691. doi:10.1371/journal.ppat.1004691
  • van der Meer-Janssen YP, van Galen J, Batenburg JJ, Helms JB. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog Lipid Res. 2010;49(1):1–26. doi:10.1016/j.plipres.2009.07.003
  • Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010;6(4):e1000834. doi:10.1371/journal.ppat.1000834
  • Flores-Díaz M, Monturiol-Gross L, Naylor C, Alape-Girón A, Flieger A. Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol Mol Biol Rev. 2016;80(3):597–628. doi:10.1128/MMBR.00082-15
  • Stahl J, Bergmann H, Göttig S, Ebersberger I, Averhoff B. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D. PLoS One. 2015;10(9):e0138360. doi:10.1371/journal.pone.0138360
  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology. 2003;149(Pt 12):3473–3484. doi:10.1099/mic.0.26541-0
  • Özarslan TO, Sirmatel F, Karabörk SO, Düzcü SE, Astarci HM. Acinetobacter baumannii pneumonia increases surfactant proteins SP-A, SP-B, and SP-D levels, while decreasing SP-C level in bronchoalveolar lavage in rats. Microbes Infect. 2023;25:105064. doi:10.1016/j.micinf.2022.105064
  • Waack U, Warnock M, Yee A, et al. cpaa is a glycan-specific adamalysin-like protease secreted by Acinetobacter baumannii that inactivates coagulation factor XII. mBio. 2018;9(6):e01606–18. doi:10.1128/mBio.01606-18
  • Tilley D, Law R, Warren S, Samis JA, Kumar A. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS Microbiol Lett. 2014;356(1):53–61. doi:10.1111/1574-6968.12496
  • Law SKK, Tan HS. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiol Res. 2022;260:127032. doi:10.1016/j.micres.2022.127032
  • Antunes LC, Imperi F, Towner KJ, Visca P. Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol. 2011;162(3):279–284. doi:10.1016/j.resmic.2010.10.010
  • Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71(3):413–451. doi:10.1128/MMBR.00012-07
  • Ferreira D, Seca AML. Targeting human pathogenic bacteria by siderophores: a proteomics review. J Proteomics. 2016;145:153–166. doi:10.1016/j.jprot.2016.04.006
  • Kim M, Kim DY, Song WY, et al. distinctive roles of two acinetobactin isomers in challenging host nutritional immunity. mBio. 2021;12(5):e0224821. doi:10.1128/mBio.02248-21
  • Penwell WF, Arivett BA, Actis LA. The Acinetobacter baumannii entA gene located outside the acinetobactin cluster is critical for siderophore production, iron acquisition and virulence. PLoS One. 2012;7(5):e36493. doi:10.1371/journal.pone.0036493
  • Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, et al. In-depth analysis of the role of the acinetobactin cluster in the virulence of Acinetobacter baumannii. Front Microbiol. 2021;12:752070. doi:10.3389/fmicb.2021.752070
  • Nairn BL, Lonergan ZR, Wang J, et al. The Response of Acinetobacter baumannii to Zinc Starvation. Cell Host Microbe. 2016;19(6):826–836. doi:10.1016/j.chom.2016.05.007
  • Repizo GD. Prevalence of Acinetobacter baumannii strains expressing the Type 6 secretion system in patients with bacteremia. Virulence. 2017;8(7):1099–1101. doi:10.1080/21505594.2017.1346768
  • Weber BS, Hennon SW, Wright MS, et al. Genetic dissection of the type vi secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio. 2016;7(5):e01253–16. doi:10.1128/mBio.01253-16
  • Johnson TL, Waack U, Smith S, Mobley H, Sandkvist M. Acinetobacter baumannii Is dependent on the type ii secretion system and its substrate lipa for lipid utilization and in vivo fitness. J Bacteriol. 2015;198(4):711–719. doi:10.1128/JB.00622-15
  • Russo TA, Manohar A, Beanan JM, et al. The response regulator bfmr is a potential drug target for Acinetobacter baumannii. mSphere. 2016;1(3):e00082–16. doi:10.1128/mSphere.00082-16
  • Yang CH, Su PW, Moi SH, Chuang LY. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules. 2019;24(10):1849. doi:10.3390/molecules24101849
  • Flemming HC, van Hullebusch ED, Neu TR, et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. 2023;21(2):70–86. doi:10.1038/s41579-022-00791-0
  • Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol. 2016t;63(4):233–239. doi:10.1111/lam.12627
  • Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol. 2008;190(3):1036–1044. doi:10.1128/JB.01416-07
  • Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol. 2009;191(19):5953–5963. doi:10.1128/JB.00647-09
  • Treter J, Macedo AJ. Catheters: a suitable surface for biofilm formation. Sci Against Microbial Pathogens. 2011;2(3):835–842.
  • Li H, Song C, Liu D, Ai Q, Yu J. Molecular analysis of biofilms on the surface of neonatal endotracheal tubes based on 16S rRNA PCR-DGGE and species-specific PCR. Int J Clin Exp Med. 2015;8(7):11075–11084.
  • Bardes JM, Waters C, Motlagh H, Wilson A. The Prevalence of oral flora in the biofilm microbiota of the endotracheal tube. Am Surg. 2016;82(5):403–406.
  • Ferreira Tde O, Koto RY. Microbial investigation of biofilms recovered from endotracheal tubes using sonication in intensive care unit pediatric patients. Braz J Infect Dis. 2016t;20(5):468–475. doi:10.1016/j.bjid.2016.07.003
  • Vandecandelaere I, Matthijs N, Nelis HJ, Depuydt P, Coenye T. The presence of antibiotic-resistant nosocomial pathogens in endotracheal tube biofilms and corresponding surveillance cultures. Pathog Dis. 2013;69(2):142–148. doi:10.1111/2049-632X.12100
  • Perkins SD, Woeltje KF, Angenent LT. Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int J Med Microbiol. 2010;300(7):503–511. doi:10.1016/j.ijmm.2010.02.005
  • Coppadoro A, Bellani G. Non-Pharmacological Interventions to Prevent Ventilator-Associated Pneumonia: a Literature Review. Respir Care. 2019;64(12):1586–1595. doi:10.4187/respcare.07127
  • Sottile FD, Marrie TJ, Prough DS, et al. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med. 1986;14(4):265–270.
  • Jarrett WA, Ribes J, Manaligod JM. (2002) Biofilm formation on tracheostomy tubes. Ear Nose Throat J. 2002;81(9):659–661. doi:10.1177/014556130208100915
  • M’hamedi I, Hassaine H, Bellifa S, Lachachi M, Terki IK, Djeribi R. Biofilm formation by Acinetobacter baumannii isolated from medical devices at the intensive care unit of the University Hospital of Tlemcen (Algeria). African J Microbio Res. 2014;8(3):270–276. doi:10.5897/AJMR2013.6288
  • Dargahi Z, Hamad AA, Sheikh AF, et al. The biofilm formation and antibiotic resistance of bacterial profile from endotracheal tube of patients admitted to intensive care unit in southwest of Iran. PLoS One. 2022;17(11):e0277329. doi:10.1371/journal.pone.0277329
  • Raveendra N, Rathnakara SH, Haswani N, Subramaniam V. Bacterial biofilms on tracheostomy tubes. Indian J Otolaryngol Head Neck Surg. 2022;74:4995–4999. doi:10.1007/s12070-021-02598-6
  • Diaconu O, Siriopol I, Poloșanu LI, Grigoraș I. Endotracheal tube biofilm and its impact on the pathogenesis of ventilator-associated pneumonia. J Crit Care Med. 2018;4(2):50–55. doi:10.2478/jccm-2018-0011
  • Cairns S, Thomas JG, Hooper SJ, et al. Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One. 2011;6(3):e14759. doi:10.1371/journal.pone.0014759
  • Baidya S, Sharma S, Mishra SK, Kattel HP, Parajuli K, Sherchand JB. Biofilm formation by pathogens causing VAPat intensive care units in a tertiary care hospital: an armor for refuge. Biomed Res Int. 2021;2021:8817700. doi:10.1155/2021/8817700
  • Khoshnood S, Sadeghifard N, Mahdian N, et al. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. J Clin Lab Anal. 2023;37(1):e24814. doi:10.1002/jcla.24814
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–320. doi:10.1038/nature24624
  • Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol. 2018;9:203. doi:10.3389/fphar.2018.00203
  • Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J Appl Microbiol. 2020;128(1):15–27. doi:10.1111/jam.14330
  • Xiong L, Yi F, Yu Q, et al. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol. 2022;22(1):198. doi:10.1186/s12866-022-02612-z
  • Sun X, Ni Z, Tang J, Ding Y, Wang X, Li F. The abaI/abaR quorum sensing system effects on pathogenicity in Acinetobacter baumannii. Front Microbiol. 2021;12:679241. doi:10.3389/fmicb.2021.679241
  • Abraham WR. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections. Antibiotics. 2016;5(1):3. doi:10.3390/antibiotics5010003
  • Yoshimura J, Kinoshita T, Yamakawa K, et al. Impact of Gram stain results on initial treatment selection in patients with ventilator-associated pneumonia: a retrospective analysis of two treatment algorithms. Crit Care. 2017;21(1):156. doi:10.1186/s13054-017-1747-5
  • Khan R, Al-Dorzi HM, Tamim HM, et al. The impact of onset time on the isolated pathogens and outcomes in ventilator associated pneumonia. J Infect Public Health. 2016;9(2):161–171. doi:10.1016/j.jiph.2015.09.002
  • Craven DE, Hudcova J, Lei Y. Diagnosis of ventilator-associated respiratory infections (VARI): microbiologic clues for tracheobronchitis (VAT) and pneumonia (VAP). Clin Chest Med. 2011;32(3):547–557. doi:10.1016/j.ccm.2011.06.001
  • Nair GB, Niederman MS. Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med. 2015;41(1):34–48. doi:10.1007/s00134-014-3564-5
  • Dudeck MA, Horan TC, Peterson KD, et al. National Healthcare Safety Network (NHSN) Report, data summary for 2010, device-associated module. Am J Infect Control. 2011;39(10):798–816. doi:10.1016/j.ajic.2011.10.001
  • Metersky ML, Wang Y, Klompas M, Eckenrode S, Bakullari A, Eldridge N. trend in VAPrates between 2005 and 2013. JAMA. 2016;316(22):2427–2429. doi:10.1001/jama.2016.16226
  • Kalanuria AA, Ziai W, Mirski M. VAPin the ICU. Crit Care. 2014;18(2):208. doi:10.1186/cc13775
  • ANVISA. Agência Nacional de Vigilância Sanitária. 2013. Critérios diagnósticos de infecção relacionada à assistência à saúde.4-150.
  • Prates CG, Martins AF, Superti SV, et al. Risk factors for 30-day mortality in patients with carbapenem-resistant Acinetobacter baumannii during an outbreak in an intensive care unit. Epidemiol Infect. 2011;139(3):411–418. doi:10.1017/S0950268810001238
  • Zahar JR, Timsit JF, Garrouste-Orgeas M, et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med. 2011;39(8):1886–1895. doi:10.1097/CCM.0b013e31821b827c
  • Tabah A, Koulenti D, Laupland K, et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med. 2012;38(12):1930–1945. doi:10.1007/s00134-012-2695-9
  • Sarda C, Fazal F, Rello J. Management of VAP(VAP) caused by resistant gram-negative bacteria: which is the best strategy to treat? Expert Rev Respir Med. 2019;13(8):787–798. doi:10.1080/17476348.2019.1632195
  • Reignier J, Darmon M, Sonneville R, et al. Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: a post hoc marginal structural model study. Intensive Care Med. 2015;41(5):875–886. doi:10.1007/s00134-015-3730-4
  • Fitch ZW, Whitman GJ. Incidence, risk, and prevention of VAPin adult cardiac surgical patients: a systematic review. J Card Surg. 2014;29(2):196–203. doi:10.1111/jocs.12260
  • Schwebel C. Safety of intrahospital transport in ventilated critically ill patients: a multicenter cohort study. Crit Care Med. 2013;41(8):1919–1928. doi:10.1097/CCM.0b013e31828a3bbd
  • Bornstain C, Azoulay E, De Lassence A, et al. Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia. Clin Infect Dis. 2004;38(10):1401–1408. doi:10.1086/386321
  • Kadri SS, Adjemian J, Lai YL, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 us hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–1814. doi:10.1093/cid/ciy378
  • Vazquez Guillamet C, Kollef MH. Acinetobacter pneumonia: improving outcomes with early identification and appropriate therapy. Clin Infect Dis. 2018;67(9):1455–1462. doi:10.1093/cid/ciy375
  • Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ, et al. Treatment of multidrug-resistant Acinetobacter baumannii VAP(VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36(9):1111–1118. doi:10.1086/374337
  • Superti SV, Martins Dde S, Caierão J, Soares Fda S, Prochnow T, Zavascki AP. Indications of carbapenem resistance evolution through heteroresistance as an intermediate stage in Acinetobacter baumannii after carbapenem administration. Rev Inst Med Trop Sao Paulo. 2009;51(2):111–113. doi:10.1590/s0036-46652009000200010
  • Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010;51(1):79–84. doi:10.1086/653120
  • Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int J Antimicrob Agents. 2003;21(1):58–62. doi:10.1016/s0924-8579(02)00276-5
  • Wood GC, Hanes SD, Croce MA, Fabian TC, Boucher BA. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of Acinetobacter ventilator-associated pneumonia. Clin Infect Dis. 2002;34(11):1425–1430. doi:10.1086/340055
  • Chu H, Zhao L, Wang M, Liu Y, Gui T, Zhang J. Sulbactam-based therapy for Acinetobacter baumannii infection: a systematic review and meta-analysis. Braz J Infect Dis. 2013;17(4):389–394. doi:10.1016/j.bjid.2012.10.029
  • Penwell WF, Shapiro AB, Giacobbe RA, et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59(3):1680–1689. doi:10.1128/AAC.04808-14
  • Ritchie DJ, Garavaglia-Wilson A. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections. Clin Infect Dis. 2014;59 Suppl 6:S374–80. doi:10.1093/cid/ciu613
  • Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis. 2013;32(9):1211–1220. doi:10.1007/s10096-013-1870-4
  • Freire AT, Melnyk V, Kim MJ, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis. 2010;68(2):140–151. doi:10.1016/j.diagmicrobio.2010.05.012
  • Rando E, Cutuli SL, Sangiorgi F, et al. Cefiderocol-containing regimens for the treatment of carbapenem-resistant A. baumannii ventilator-associated pneumonia: a propensity-weighted cohort study. JAC Antimicrob Resist. 2023;5(4):dlad085. doi:10.1093/jacamr/dlad085
  • Corcione S, De Benedetto I, Pinna SM, et al. Cefiderocol use in Gram negative infections with limited therapeutic options: is combination therapy the key? J Infect Public Health. 2022;15(9):975–979. doi:10.1016/j.jiph.2022.07.006
  • Alp E, Eren E, Elay G, Cevahir F, Esmaoğlu A, Rello J. Efficacy of loading dose of colistin in Acinetobacter baumannii ventilator-associated pneumonia. Infez Med. 2017;25(4):311–319.
  • Wang J, Niu H, Wang R, Cai Y. Safety and efficacy of colistin alone or in combination in adults with Acinetobacter baumannii infection: a systematic review and meta-analysis. Int J Antimicrob Agents. 2019;53(4):383–400. doi:10.1016/j.ijantimicag.2018.10.020
  • Khawcharoenporn T, Pruetpongpun N, Tiamsak P, Rutchanawech S, Mundy LM, Apisarnthanarak A. Colistin-based treatment for extensively drug-resistant Acinetobacter baumannii pneumonia. Int J Antimicrob Agents. 2014;43(4):378–382. doi:10.1016/j.ijantimicag.2014.01.016
  • Biagi M, Butler D, Tan X, Qasmieh S, Wenzler E. A breath of fresh air in the fog of antimicrobial resistance: inhaled polymyxins for gram-negative pneumonia. Antibiotics. 2019;8(1):27. doi:10.3390/antibiotics8010027
  • Moghaddam O, Niakan Lahiji M, Talebi-Taher M, Mahmoodiyeh B. effect of inhaled colistin on the treatment of VAPdue to multi-drug resistant Acinetobacter. Tanaffos. 2019;18(1):66–73.
  • Valachis A, Samonis G, Kofteridis DP. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia: a systematic review and metaanalysis. Crit Care Med. 2015;43(3):527–533. doi:10.1097/CCM.0000000000000771
  • Solé-Lleonart C, Rouby JJ, Blot S, et al. Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: a Systematic Review and Meta-analysis. Anesthesiology. 2017;126(5):890–908. doi:10.1097/ALN.0000000000001570
  • Kisil OV, Efimenko TA, Gabrielyan NI, et al. Development of antimicrobial therapy methods to overcome the antibiotic resistance of Acinetobacter baumannii. Acta Naturae. 2020;12(3):34–45. doi:10.32607/actanaturae.10955
  • Comeau AM, Hatfull GF, Krisch HM, et al. Exploring the prokaryotic virosphere. Res Microbiol. 2008;159(5):306–313. doi:10.1016/j.resmic.2008.05.001
  • Bagińska N, Pichlak A, Górski A, et al. Specific and selective bacteriophages in the fight against multidrug-resistant Acinetobacter baumannii. Virol Sin. 2019;34(4):347–357. doi:10.1007/s12250-019-00125-0
  • Jung CJ, Liao YD, Hsu CC, et al. Identification of potential therapeutic antimicrobial peptides against Acinetobacter baumannii in a mouse model of pneumonia. Sci Rep. 2021;11(1):7318. doi:10.1038/s41598-021-86844-5
  • Losasso C, Belluco S, Cibin V, et al. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol. 2014;26(5):227. doi:10.3389/fmicb.2014.00227
  • Intorasoot A, Chornchoem P, Sookkhee S, et al. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii. J Intercult Ethnopharmacol. 2017;6(2):218–222. doi:10.5455/jice.20170411091159
  • Meng L, Wang C, Li J, Zhang J. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J. 2016;10(6):684–692. doi:10.1111/crj.12286
  • Klompas M, Branson R, Eichenwald EC, et al. Strategies to prevent VAPin acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:S133–54. doi:10.1017/s0899823x00193894
  • Rello J, Lode H, Cornaglia G, Masterton R, VAP Care Bundle Contributors. A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med. 2010;36(5):773–780. doi:10.1007/s00134-010-1841-5
  • Speck K, Rawat N, Weiner NC, Tujuba HG, Farley D, Berenholtz S. A systematic approach for developing a VAPprevention bundle. Am J Infect Control. 2016;44(6):652–656. doi:10.1016/j.ajic.2015.12.020
  • Roquilly A, Marret E, Abraham E, Asehnoune K. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin Infect Dis. 2015;60(1):64–75. doi:10.1093/cid/ciu740
  • de Smet AM, Kluytmans JA, Cooper BS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360(1):20–31. doi:10.1056/NEJMoa0800394
  • Klompas M. Oropharyngeal Decontamination with Antiseptics to Prevent Ventilator-Associated Pneumonia: rethinking the Benefits of Chlorhexidine. Semin Respir Crit Care Med. 2017;38(3):381–390. doi:10.1055/s-0037-1602584
  • LPSN.dsmz.de; 2023. Available from:https://classic.clinicaltrials.gov/ct2/show/. Accessed September 10, 2023.
  • Aloush SM. Does educating nurses with VAPprevention guidelines improve their compliance? Am J Infect Control. 2017;45(9):969–973. doi:10.1016/j.ajic.2017.04.009
  • Jansson M, Ala-Kokko T, Ylipalosaari P, Syrjälä H, Kyngäs H. Critical care nurses’ knowledge of, adherence to and barriers towards evidence-based guidelines for the prevention of ventilator-associated pneumonia--a survey study. Intensive Crit Care Nurs. 2013;29(4):216–227. doi:10.1016/j.iccn.2013.02.006
  • Madhuvu A, Endacott R, Plummer V, Morphet J. Nurses’ knowledge, experience and self-reported adherence to evidence-based guidelines for prevention of ventilator-associated events: a national online survey. Intensive Crit Care Nurs. 2020;59:102827. doi:10.1016/j.iccn.2020.102827
  • Madhuvu A, Endacott R, Plummer V, Morphet J. Healthcare professional views on barriers to implementation of evidence-based practice in prevention of ventilator-associated events: a qualitative descriptive study. Intensive Crit Care Nurs. 2022;68:103133. doi:10.1016/j.iccn.2021.103133
  • Jam R, Mesquida J, Hernández Ó, et al. Nursing workload and compliance with non-pharmacological measures to prevent ventilator-associated pneumonia: a multicentre study. Nurs Crit Care. 2018;23(6):291–298. doi:10.1111/nicc.12380
  • Bouadma L, Mourvillier B, Deiler V, et al. Changes in knowledge, beliefs, and perceptions throughout a multifaceted behavioral program aimed at preventing ventilator-associated pneumonia. Intensive Care Med. 2010;36(8):1341–1347. doi:10.1007/s00134-010-1890-9
  • Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): a Review. JAMA. 2020;324(8):782–793. doi:10.1001/jama.2020.12839
  • Maes M, Higginson E, Pereira-Dias J, et al. VAPin critically ill patients with COVID-19. Crit Care. 2021;25(1):25. doi:10.1186/s13054-021-03460-5
  • François B, Laterre PF, Luyt CE, Chastre J. The challenge of VAPdiagnosis in COVID-19 patients. Crit Care. 2020;24(1):289. doi:10.1186/s13054-020-03013-2
  • Jain S, Khanna P, Sarkar S. Comparative evaluation of VAPin critically ill COVID- 19 and patients infected with other Corona viruses: a systematic review and meta-analysis. Monaldi Arch Chest Dis. 2021;92:2. doi:10.4081/monaldi.2021.1610
  • Ippolito M, Misseri G, Catalisano G, et al. VAPin patients with covid-19: a systematic review and meta-analysis. Antibiotics. 2021;10(5):545. doi:10.3390/antibiotics10050545
  • Gamberini L, Tonetti T, Spadaro S, et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: multicenter observational study in fifteen Italian ICUs. J Intensive Care. 2020;8:80. doi:10.1186/s40560-020-00499-4
  • Nseir S, Martin-Loeches I, Povoa P, et al. Relationship between VAPand mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort. Crit Care. 2021;25(1):177. doi:10.1186/s13054-021-03588-4
  • Meawed TE, Ahmed SM, Mowafy SMS, Samir GM, Anis RH. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J Infect Public Health. 2021;14(10):1375–1380. doi:10.1016/j.jiph.2021.08.003
  • Pascale R, Bussini L, Gaibani P, et al. Carbapenem-resistant bacteria in an intensive care unit during the coronavirus disease 2019 (COVID-19) pandemic: a multicenter before-and-after cross-sectional study. Infect Control Hosp Epidemiol. 2022;43(4):461–466. doi:10.1017/ice.2021.144
  • Gottesman T, Fedorowsky R, Yerushalmi R, Lellouche J, Nutman A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infect Prev Pract. 2021;3(1):100113. doi:10.1016/j.infpip.2021.100113
  • Shinohara DR. Outbreak of endemic carbapenem-resistant Acinetobacter baumannii in a coronavirus disease 2019 (COVID-19)-specific intensive care unit. Infect Control Hosp Epidemiol. 2022;43(6):815–817. doi:10.1017/ice.2021.98
  • Rouyer M, Strazzulla A, Youbong T, et al. VAPin COVID-19 Patients: a Retrospective Cohort Study. Antibiotics. 2021;10(8):988. doi:10.3390/antibiotics10080988
  • Zand F, Vakili H, Asmarian N, et al. Unintended impact of COVID-19 pandemic on the rate of catheter related nosocomial infections and incidence of multiple drug resistance pathogens in three intensive care units not allocated to COVID-19 patients in a large teaching hospital. BMC Infect Dis. 2023;23(1):11. doi:10.1186/s12879-022-07962-7
  • Giacobbe DR, Battaglini D, Enrile EM, et al. Incidence and prognosis of VAPin critically ill patients with COVID-19: a multicenter study. J Clin Med. 2021;10(4):555. doi:10.3390/jcm10040555
  • Gregorczyk-Maga I, Pałka A, Fiema M, et al. Correction: impact of tooth brushing on oral bacteriota and health care-associated infections among ventilated COVID-19 patients: an intervention study. Antimicrob Resist Infect Control. 2023;12(1):51. doi:10.1186/s13756-023-01256-6
  • Puzniak L, Bauer KA, Yu KC, et al. Effect of inadequate empiric antibacterial therapy on hospital outcomes in SARS-CoV-2-positive and -negative us patients with a positive bacterial culture: a multicenter evaluation from march to November 2020. Open Forum Infect Dis. 2021;8(6):ofab232. doi:10.1093/ofid/ofab232
  • Jeffreys S, Chambers JP, Yu JJ, Hung CY, Forsthuber T, Arulanandam BP. Insights into Acinetobacter baumannii protective immunity. Front Immunol. 2022;13:1070424. doi:10.3389/fimmu.2022.1070424
  • Cox MJ, Loman N, Bogaert D, O’Grady J. Co-infections: potentially lethal and unexplored in COVID-19. Lancet Microbe. 2020;1(1):e11. doi:10.1016/S2666-5247(20)30009-4
  • Cureño-Díaz MA, Durán-Manuel EM, Cruz-Cruz C, et al. Impact of the modification of a cleaning and disinfection method of mechanical ventilators of COVID-19 patients and ventilator-associated pneumonia: one year of experience. Am J Infect Control. 2021;49(12):1474–1480. doi:10.1016/j.ajic.2021.09.012
  • Perez S, Innes GK, Walters MS, et al. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in COVID-19 admissions - New Jersey, February-July 2020. MMWR Morb Mortal Wkly Rep. 2020;69(48):1827–1831. doi:10.15585/mmwr.mm6948e1
  • Vijay S, Bansal N, Rao BK, et al. Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect Drug Resist. 2021;14:1893–1903. doi:10.2147/IDR.S299774
  • Loyola-Cruz MÁ, Durán-Manuel EM, Cruz-Cruz C, et al. ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. Am J Infect Control. 2023;51(7):729–737. doi:10.1016/j.ajic.2022.08.012
  • Ukuhor HO. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health. 2021;14(1):53–60. doi:10.1016/j.jiph.2020.10.018