230
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Escherichia coli from Human Wounds: Analysis of Resistance to β-Lactams and Expression of RND Efflux Pumps

ORCID Icon, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 7365-7375 | Received 15 Aug 2023, Accepted 04 Nov 2023, Published online: 28 Nov 2023

References

  • Pandey N, Cascella M. Beta lactam antibiotics. 2019.
  • Goussard S, Courvalin P. Updated sequence information for TEM β-lactamase genes. Antimicrob Agents Chemother. 1999;43(2):367–370. doi:10.1128/AAC.43.2.367
  • Osmon DR, Berbari EF, Berendt AR, et al. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):1–10. doi:10.1093/cid/cis966
  • Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt). 2013;14(1):73–156. doi:10.1089/sur.2013.9999
  • Li M, Liu Q, Teng Y, et al. The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. Infect Drug Resist. 2019;12:2853. doi:10.2147/IDR.S221212
  • Katzung BG, Masters SB, Trevor AJ. Basic & Clinical Pharmacology. Ch. 8. New York: McGraw-Hill; 2012.
  • Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–584. doi:10.1128/CMR.8.4.557
  • Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161–182. doi:10.1128/CMR.00036-08
  • Tan P, Wang Z, Sun A, Yan J, Zhao J. Predominant β-lactamase genotypes of Escherichia coli isolates and induction and inhibition mechanisms of β-lactamase gene expression. Zhonghua liu Xing Bing xue za zhi. 2015;36(5):484–490.
  • Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483. doi:10.3389/fmicb.2016.01483
  • Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523–539. doi:10.1038/s41579-018-0048-6
  • Blanco P, Hernando-Amado S, Reales-Calderon JA, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4(1):14. doi:10.3390/microorganisms4010014
  • Hinchliffe P, Symmons MF, Hughes C, Koronakis V. Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol. 2013;67:221–242. doi:10.1146/annurev-micro-092412-155718
  • Yasufuku T, Shigemura K, Shirakawa T, et al. Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patients. J Clin Microbiol. 2011;49(1):189–194. doi:10.1128/JCM.00827-10
  • Yang S, Clayton SR, Zechiedrich EL. Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J Antimicrob Chemother. 2003;51(3):545–556. doi:10.1093/jac/dkg126
  • Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. doi:10.1128/CMR.00117-14
  • Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006;55(12):1619–1629. doi:10.1099/jmm.0.46747-0
  • Delmar JA, Yu EW. The A bg T family: a novel class of antimetabolite transporters. Prot Sci. 2016;25(2):322–337. doi:10.1002/pro.2820
  • Hassan KA, Elbourne LD, Li L, et al. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front Microbiol. 2015;6:333. doi:10.3389/fmicb.2015.00333
  • Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009;69(12):1555–1623. doi:10.2165/11317030-000000000-00000
  • Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol. 2002;184(23):6490–6498. doi:10.1128/JB.184.23.6490-6499.2002
  • Wang Z, Zhang P, Ding X, et al. Co-delivery of ampicillin and β-lactamase inhibitor by selenium nanocomposite to achieve synergistic anti-infective efficiency through overcoming multidrug resistance. Chem Eng J. 2021;414:128908. doi:10.1016/j.cej.2021.128908
  • Zheng B, Zhang J, Ji J, et al. Emergence of Raoultella ornithinolytica coproducing IMP-4 and KPC-2 carbapenemases in China. Antimicrob Agents Chemother. 2015;59(11):7086–7089. doi:10.1128/AAC.01363-15
  • Feizabadi MM, Delfani S, Raji N, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbial Drug Resist. 2010;16(1):49–53. doi:10.1089/mdr.2009.0096
  • Belaaouaj A, Lapoumeroulie C, Caniça MM, et al. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett. 1994;120(1–2):75–80. doi:10.1111/j.1574-6968.1994.tb07010.x
  • Féria C, Ferreira E, Correia JD, Gonçalves J, Caniça M. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother. 2002;49(1):77–85. doi:10.1093/jac/49.1.77
  • Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55(2):921–924. doi:10.1128/AAC.00996-10
  • Scientific T. Sodium acetate/ethanol precipitation protocol. ThermoFisher Scientific; 2023. Available from: https://www.thermofisher.com/cz/en/home/references/protocols/nucleic-acid-purification-and-analysis/dna-protocol/sodium-acetate-precipitation-of-small-nucleic-acids.html. Accessed August 14, 2023.
  • Testing, E.C.o.A.S. Breakpoint tables for interpretation of MICs and zone diameters; 2021.
  • Tewari R, Ganaie F, Venugopal N, Mitra S, Shome R, Shome BR. Occurrence and characterization of genetic determinants of β-lactam-resistance in Escherichia coli clinical isolates. Infect Genet Evol. 2022;100:105257. doi:10.1016/j.meegid.2022.105257
  • Röderova M, Halova D, Papousek I, et al. Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic. Front Microbiol. 2017;7:2147. doi:10.3389/fmicb.2016.02147
  • Pandit R, Awal B, Shrestha SS, Joshi G, Rijal BP, Parajuli NP. Extended-spectrum β-lactamase (ESBL) genotypes among multidrug-resistant uropathogenic Escherichia coli clinical isolates from a teaching hospital of Nepal. Interdiscip Perspect Infect Dis. 2020;2020. doi:10.1155/2020/6525826
  • Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β lactamases producing superbugs–Havoc in the Intensive Care Units of Punjab India. J Clin Diagn Res. 2013;7(1):70. doi:10.7860/JCDR/2012/5016.2673
  • Jafari SA, Mobaiyen H. Frequency and resistance patterns in clinical isolates of Escherichia coli Extended Spectrum Beta Lactamase producing treatment Centers in Marand city, Iran; 2017.
  • Mesa-Varona O, Kaspar H, Grobbel M, Tenhagen B-A. Phenotypical antimicrobial resistance data of clinical and non-clinical Escherichia coli from poultry in Germany between 2014 and 2017. PLoS One. 2020;15(12):e0243772. doi:10.1371/journal.pone.0243772
  • Sáenz Y, Zarazaga M, Briñas L, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents. 2001;18(4):353–358. doi:10.1016/S0924-8579(01)00422-8
  • Maynard C, Bekal S, Sanschagrin F, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol. 2004;42(12):5444–5452. doi:10.1128/JCM.42.12.5444-5452.2004
  • Brinas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C. β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother. 2002;46(10):3156–3163. doi:10.1128/AAC.46.10.3156-3163.2002
  • Alharbi NS, Khaled JM, Kadaikunnan S, et al. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J Biol Sci. 2019;26(7):1557–1562. doi:10.1016/j.sjbs.2018.11.016
  • Naik TB, Mane V, Biradar AJP. Occurrence of extended-spectrum beta-lactamases and the Antibiogram Pattern of Escherichia coli Isolates from Pus and Urine Samples. J Pure Appl Microbiol. 2022;15(26).
  • Yenn TW, Khan MA, Syuhada NA, Ring LC, Ibrahim D, Tan W-N. Stigmasterol: an adjuvant for beta lactam antibiotics against beta-lactamase positive clinical isolates. Steroids. 2017;128:68–71. doi:10.1016/j.steroids.2017.10.016
  • Sjölund M, Bengtsson S, Bonnedahl J, Hernandez J, Olsen B, Kahlmeter G. Antimicrobial susceptibility in Escherichia coli of human and avian origin—a comparison of wild-type distributions. Clin Microbiol Infect. 2009;15(5):461–465. doi:10.1111/j.1469-0691.2009.02705.x
  • Rodríguez-Villodres Á, Gil-Marqués ML, Álvarez-Marín R, et al. Extended-spectrum resistance to β-lactams/β-lactamase inhibitors (ESRI) evolved from low-level resistant Escherichia coli. J Antimicrob Chemother. 2020;75(1):77–85. doi:10.1093/jac/dkz393
  • Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence of plasmidic AmpC type β-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). Int J Antimicrob Agents. 2006;28(6):578–581. doi:10.1016/j.ijantimicag.2006.07.025
  • Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18(5):741. doi:10.3201/eid1805.111153
  • Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G. Prevalence of blaTEM, blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol. 2014;57(2):249. doi:10.4103/0377-4929.134698
  • Ojdana D, Sacha P, Wieczorek P, et al. The occurrence of blaCTX-M, blaSHV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int J Antibiot. 2014;2014:1–7. doi:10.1155/2014/935842
  • Olesen I, Hasman H, Møller Aarestrup F. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microbial Drug Resist. 2004;10(4):334–340. doi:10.1089/mdr.2004.10.334
  • Fu Y, Zhang F, Zhang W, et al. Differential expression of blaSHV related to susceptibility to ampicillin in Klebsiella pneumoniae. Int J Antimicrob Agents. 2007;29(3):344–347. doi:10.1016/j.ijantimicag.2006.10.015
  • Chen Y, Zhao J, Ding F, et al. The blaCTX-M gene independently enhances drug resistance level to ampicillin in clinical isolates of Klebsiella pneumoniae. J Antibiot (Tokyo). 2012;65(9):479–481. doi:10.1038/ja.2012.44
  • Lesani SS, Soleimani M, Shakib P, Zolfaghari MR. Prevalence of blaCTX-M, blaSHV, and blaTEM genes in Escherichia coli strains isolated from urinary tract infection samples of patients in the Intensive Care Unit in Qom, Iran. Gene Cell Tissue. 2020;7(2). doi:10.5812/gct.102700
  • Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019;11(1). doi:10.4084/MJHID.2019.041
  • Ugbo E, Anyamene C, Moses I, et al. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae of clinical origin. Gene Rep. 2020;21:100909. doi:10.1016/j.genrep.2020.100909
  • Nawaz M, Khan A, Khan S, et al. Identification of novel plasmid replicons harboring β-lactamase resistant genes in ampicillin-resistant uropathogenic Escherichia coli. J Bacteriol Mycol. 2019;6:1102.
  • Soares CRP, Magalhães V, de Araújo PSR. Coexistence of blaTEM, blaCTX, blaKPC, blaNDM, blaSIM e blaOXA-48 in polymicrobial bloodstream isolates from a patient with acute myeloid leukemia. Res Soc Dev. 2021;10(5):e39310514985–e39310514985. doi:10.33448/rsd-v10i5.14985
  • Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev. 2002;66(4):671–701. doi:10.1128/MMBR.66.4.671-701.2002
  • Mazzariol A, Tokue Y, Kanegawa TM, Cornaglia G, Nikaido H. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob Agents Chemother. 2000;44(12):3441–3443. doi:10.1128/AAC.44.12.3441-3443.2000
  • Chetri S, Bhowmik D, Paul D, et al. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):1–7. doi:10.1186/s12866-019-1589-1
  • Atac N, Kurt-Azap O, Dolapci I, et al. The role of AcrAB–TolC efflux pumps on quinolone resistance of E. coli ST131. Curr Microbiol. 2018;75(12):1661–1666. doi:10.1007/s00284-018-1577-y
  • Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996;19(1):101–112. doi:10.1046/j.1365-2958.1996.357881.x
  • Li M, Gu R, Su -C-C, et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J Mol Biol. 2007;374(3):591–603. doi:10.1016/j.jmb.2007.09.064
  • Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–1177. doi:10.2217/fmb.14.66
  • Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 2015;6:587. doi:10.3389/fmicb.2015.00587
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923–1929. doi:10.1128/JB.187.6.1923-1929.2005
  • Sano N, Kim J-S, Onda Y, et al. RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Sci Rep. 2017;7(1):8095. doi:10.1038/s41598-017-08116-5