148
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Prevalence, Transmission and Genetic Diversity of Pyrazinamide Resistance Among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Hunan, China

, , , , , , , , , , , , , , ORCID Icon, & show all
Pages 403-416 | Received 14 Sep 2023, Accepted 15 Jan 2024, Published online: 31 Jan 2024

References

  • World Health Organization. Global Tuberculosis Report. Geneva: World Health 0rganization; 2022.
  • Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa1108789
  • Singh R, Dwivedi SP, Gaharwar US, et al. Recent updates on drug resistance in mycobacterium tuberculosis. J Appl Microbiol. 2020;128(6):1547–1567. doi:10.1111/jam.14478
  • Kempker RR, Heinrichs MT, Nikolaishvili K, et al. Lung tissue concentrations of pyrazinamide among patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(6): doi:10.1128/AAC.00226-17
  • Zhang Y, Chiu Chang K, Leung CC, et al. ‘Z(S)-MDR-TB’ versus ‘Z(R)-MDR-TB’: improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg Microbes Infect. 2012;1(7): e5. doi:10.1038/emi.2012.18
  • Whitfiels MG, Soeters HM, Warren RM, et al. A global perspective on pyrazinamide resistance: systematic review and meta-analysis. PLoS One. 2015;10(7): e0133869. doi:10.1371/journal.pone.0133869
  • Morlock GP, Tyrrell FC, Baynham D, et al. Using reduced inoculum densities of mycobacterium tuberculosis in MGIT pyrazinamide susceptibility testing to prevent false-resistant results and improve accuracy: a multicenter evaluation. Tuberc Res Treat. 2017;2017:3748163. doi:10.1155/2017/3748163
  • Mustazzolu A, Piersimoni C, Iacobino A, et al. Revisiting problems and solutions to decrease mycobacterium tuberculosis pyrazinamide false resistance when using the bactec MGIT 960 system. Ann Ist Super Sanita. 2019;55(1):51–54. doi:10.4415/ANN_19_01_09
  • Konno K, Feldmann F, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967;95(3):461–469. doi:10.1164/arrd.1967.95.3.461
  • Wayne LG. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir. 1974; 109: 147–51.
  • Aono A, Chikamatsu K, Yamada H, et al. A simplified pyrazinamidase test for pyrazinamide drug susceptibility in mycobacterium tuberculosis. J Microbiol Methods. 2018;154:52–54. doi:10.1016/j.mimet.2018.09.018
  • Singh P, Wesley C, Jadaun GP, et al. Comparative evaluation of Lowenstein-Jensen proportion method, bact/ALERT 3D system, and enzymatic pyrazinamidase assay for pyrazinamide susceptibility testing of mycobacterium tuberculosis. J Clin Microbiol. 2007;45(1):76–80. doi:10.1128/JCM.00951-06
  • World Health Organization. WHO operational handbook on tuberculosis: module 3: diagnosis-rapid diagnostics for tuberculosis detection: World Health Organization; 2021.
  • Li K, Yang Z, Gu J, et al. Characterization of pncA mutations and prediction of PZA resistance in mycobacterium tuberculosis clinical isolates from Chongqing, China. Front Microbiol. 2020;11:594171. doi:10.3389/fmicb.2020.594171
  • Yadon AN, Maharaj K, Adamson JH, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun. 2017;8(1):588. doi:10.1038/s41467-017-00721-2
  • Miotto P, Cabibbe AM, Feuerriegel S, et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. mBio. 2014;5(5): e01819–14. doi:10.1128/mBio.01819-14
  • Ei PW, Mon AS, Htwe MM, et al. Pyrazinamide resistance and pncA mutations in drug resistant mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis. 2020;125:102013. doi:10.1016/j.tube.2020.102013
  • Naluyange R, Mboowa G, Komakech K, et al. High prevalence of phenotypic pyrazinamide resistance and its association with pncA gene mutations in mycobacterium tuberculosis isolates from Uganda. PLoS One. 2020;15(5): e0232543. doi:10.1371/journal.pone.0232543
  • Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in mycobacterium tuberculosis. Science. 2011;333(6049):1630–1632. doi:10.1126/science.1208813
  • Dillon NA, Peterson ND, Feaga HA, et al. Anti-tubercular activity of pyrazinamide is independent of trans-translation and RpsA. Sci Rep. 2017;7(1):6135. doi:10.1038/s41598-017-06415-5
  • Liu W, Chen J, Shen Y, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant mycobacterium tuberculosis clinical isolates in Hangzhou, China. Clin Microbiol Infect. 2018;24(9): e1–1016 e5. doi:10.1016/j.cmi.2017.12.012
  • Khan MT, Rehaman AU, Junaid M, et al. Insight into novel clinical mutants of RpsA-S324F, E325K, and G341R of Mycobacterium tuberculosis associated with pyrazinamide resistance. Comput Struct Biotechnol J. 2018;16:379–387. doi:10.1016/j.csbj.2018.09.004
  • Khan MT, Khan A, Rehman AU, et al. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep. 2019;9(1):7482. doi:10.1038/s41598-019-44013-9
  • Tan Y, Hu Z, Zhang T, et al. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol. 2014;52(1):291–297. doi:10.1128/JCM.01903-13
  • Xia Q, Zhao LL, Li F, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Zhejiang, China. Antimicrob Agents Chemother. 2015;59(3):1690–1695. doi:10.1128/AAC.04541-14
  • Zhang S, Chen J, Shi W, et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2013;2(6):e34. doi:10.1038/emi.2013.38
  • Gopal P, Sarathy JP, Yee M, et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat Commun. 2020;11(1):1661. doi:10.1038/s41467-020-15516-1
  • Shi J, Su R, Zheng D, et al. Pyrazinamide resistance and mutation patterns among multidrug-resistant mycobacterium tuberculosis from Henan Province. Infect Drug Resist. 2020;13:2929–2941. doi:10.2147/IDR.S260161
  • Burgos MV, Pym AS. Molecular epidemiology of tuberculosis. Eur Respir J Suppl. 2002;36(Supplement 36):54s–65s. doi:10.1183/09031936.02.00400702
  • Eva Nathanson MS, Paul Nunn FRCP, Mukund Uplekar MD, et al. MDR Tuberculosis — critical Steps for Prevention and Control. New Engl J Med. 2010;363 (11) : 1050 -8. doi:10.1056/NEJMra0908076
  • Che Y, Bo D, Lin X, et al. Phenotypic and molecular characterization of pyrazinamide resistance among multidrug-resistant mycobacterium tuberculosis isolates in Ningbo, China. BMC Infect Dis. 2021;21(1):605. doi:10.1186/s12879-021-06306-1
  • Alene KA, Xu Z, Bai L, et al. Spatial clustering of drug-resistant tuberculosis in Hunan province, China: an ecological study. BMJ Open. 2021;11(4): e043685. doi:10.1136/bmjopen-2020-043685
  • World health Organization. Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs. World health Organization;2008.
  • World health Organization. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. World health Organization;.2018.
  • Wayne LG. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis. 1974;109(1):147–151. doi:10.1164/arrd.1974.109.1.147
  • World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance. Geneva: World Health Organization; 2021.
  • Supply P, Allix C, Lesjean S, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of mycobacterium tuberculosis. J Clin Microbiol. 2006;44(12):4498–4510. doi:10.1128/JCM.01392-06
  • Pang Y, Zhu D, Zheng H, et al. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis. 2017;17(1):711. doi:10.1186/s12879-017-2761-6
  • Gu Y, Yu X, Jiang G, et al. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations. Diagn Microbiol Infect Dis. 2016;84(3):207–211. doi:10.1016/j.diagmicrobio.2015.10.017
  • Pwasmmsmktllnn E. Pyrazinamide resistance and pncA mutations in drug resistant mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis. 2020;125: doi:10.1016/j.tube.2020.102013
  • Calderon RI, Velasquez GE, Becerra MC, et al. Prevalence of pyrazinamide resistance and Wayne assay performance analysis in a tuberculosis cohort in Lima, Peru. Int J Tuberc Lung Dis. 2017;21(8):894–901. doi:10.5588/ijtld.16.0850
  • Park S, Jo KW, Shim TS. Treatment outcomes in multidrug-resistant tuberculosis according to pyrazinamide susceptibility. Int J Tuberc Lung Dis. 2020;24(2):233–239. doi:10.5588/ijtld.19.0314
  • Alame-Emane AKXP, Pierre-Audigier C, Cadet-Daniel V, et al. Pyrazinamide resistance in mycobacterium tuberculosis arises after rifampicin and fluoroquinolone resistance. Int J Tuberc Lung Dis. 2015;19(6):679–684. doi:10.5588/ijtld.14.0768
  • Daum LT, Konstantynovska OS, Solodiankin OS, et al. Characterization of novel Mycobacterium tuberculosis pncA gene mutations in clinical isolates from the Ukraine. Diagn Microbiol Infect Dis Apr. 2019;93(4):334–338. doi:10.1016/j.diagmicrobio.2018.10.018
  • Sengstake S, Bergval IL, Schuitema AR, et al. Pyrazinamide resistance-conferring mutations in pncA and the transmission of multidrug resistant TB in Georgia. BMC Infect Dis. 2017;17(1):491. doi:10.1186/s12879-017-2594-3
  • Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2014;32(2):209–221. doi:10.1080/07391102.2012.759885
  • Jonmalung J, Prammananan T, Leechawengwongs M, et al. Surveillance of pyrazinamide susceptibility among multidrug-resistant mycobacterium tuberculosis isolates from Siriraj Hospital, Thailand. BMC Microbiol. 2010;10(1):223. doi:10.1186/1471-2180-10-223
  • Rueda D, Bernard C, Gandy L. susceptibility in Mycobacterium tuberculosis. Int J Mycobacteriol. 2018;7(1):16–25. doi:10.4103/ijmy.ijmy_187_17
  • Ramirez-Busby SM, Rodwell TC, Fink L, et al. A multinational analysis of mutations and heterogeneity in PZase, RpsA, and PanD associated with pyrazinamide resistance in M/XDR mycobacterium tuberculosis. Sci Rep. 2017;7(1):3790. doi:10.1038/s41598-017-03452-y
  • Karmakar M, Rodrigues CHM, Horan K, et al. Structure guided prediction of pyrazinamide resistance mutations in pncA. Sci Rep. 2020;10(1):1875. doi:10.1038/s41598-020-58635-x
  • Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat Commun. 2014;5(1):5792. doi:10.1038/ncomms6792
  • Vallejos-Sanchez K, Lopez JM, Antiparra R, et al. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep. 2020;10(1):8356. doi:10.1038/s41598-020-65173-z
  • Gopal P, Nartey W, Ragunathan P, et al. Pyrazinoic acid inhibits mycobacterial coenzyme a biosynthesis by binding to aspartate decarboxylase PanD. ACS Infect Dis. 2017;3(11):807–819. doi:10.1021/acsinfecdis.7b00079
  • World health Organization. High-Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting. Geneva: World Health Organization; 2014.