121
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Seroprevalence and Molecular Characterization of Brucella abortus from the Himalayan Marmot in Qinghai, China

, , , , , , , , , , & show all
Pages 7721-7734 | Received 18 Sep 2023, Accepted 13 Dec 2023, Published online: 19 Dec 2023

References

  • Corbel MJ. Brucellosis: an overview. Emerg Infect Dis. 1997;3(2):213–221. doi:10.3201/eid0302.970219
  • Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol. 2007;57(Pt 11):2688–2693. doi:10.1099/ijs.0.65269-0
  • Whatmore AM, Davison N, Cloeckaert A, et al. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol. 2014;64(Pt 12):4120–4128. doi:10.1099/ijs.0.065482-0
  • Scholz HC, Hubalek Z, Sedlácek I, et al. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. 2008;58(Pt 2):375–382. doi:10.1099/ijs.0.65356-0
  • Scholz HC, Nöckler K, Göllner C, et al. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol. 2010;60(Pt 4):801–808. doi:10.1099/ijs.0.011148-0
  • Scholz HC, Revilla-Fernández S, Dahouk SA, et al. Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int J Syst Evol Microbiol. 2016;66(5):2090–2098. doi:10.1099/ijsem.0.000998
  • Pisarenko SV, Kovalev DA, Volynkina AS, et al. Global evolution and phylogeography of Brucella melitensis strains. BMC Genomics. 2018;19(1):353. doi:10.1186/s12864-018-4762-2
  • Garofolo G, Di Giannatale E, Platone I, et al. Origins and global context of Brucella abortus in Italy. BMC Microbiol. 2017;17(1):28. doi:10.1186/s12866-017-0939-0
  • Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91–99. doi:10.1016/s1473-3099(06)70382-6
  • Zhu X, Zhao Z, Ma S, et al. Brucella melitensis, a latent “travel bacterium”, continual spread and expansion from Northern to Southern China and its relationship to worldwide lineages. Emerg Microbes Infect. 2020;9(1):1618–1627. doi:10.1080/22221751.2020.1788995
  • Ran X, Chen X, Wang M, et al. Brucellosis seroprevalence in ovine and caprine flocks in China during 2000–2018: a systematic review and meta-analysis. BMC Vet Res. 2018;14(1):393. doi:10.1186/s12917-018-1715-6
  • Wang H, Xu WM, Zhu KJ, et al. Molecular investigation of infection sources and transmission chains of brucellosis in Zhejiang, China. Emerg Microbes Infect. 2020;9(1):889–899. doi:10.1080/22221751.2020.1754137
  • Liu ZG, Wang LJ, Piao DR, et al. Molecular investigation of the transmission pattern of Brucella suis 3 From Inner Mongolia, China. Front Vet Sci. 2018;5:271. doi:10.3389/fvets.2018.00271
  • Deqiu S, Donglou X, Jiming Y. Epidemiology and control of brucellosis in China. Vet Microbiol. 2002;90(1–4):165–182. doi:10.1016/s0378-1135(02)00252-3
  • Zhao B, Gong QL, Feng HF, et al. Brucellosis prevalence in yaks in China in 1980–2019: a systematic review and meta-analysis. Prev Vet Med. 2022;198:105532. doi:10.1016/j.prevetmed.2021.105532
  • Cao X, Li Z, Liu Z, et al. Molecular epidemiological characterization of Brucella isolates from sheep and yaks in northwest China. Transbound Emerg Dis. 2018;65(2):e425–e433. doi:10.1111/tbed.12777
  • Ma JY, Wang H, Zhang XF, et al. MLVA and MLST typing of Brucella from Qinghai, China. Infect Dis Poverty. 2016;5:26. doi:10.1186/s40249-016-0123-z
  • Banskar S, Bhute SS, Suryavanshi MV, Punekar S, Shouche YS. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci Rep. 2016;6(1):36948. doi:10.1038/srep36948
  • Bai Y, Urushadze L, Osikowicz L, et al. Molecular survey of bacterial zoonotic agents in bats from the Country of Georgia (Caucasus). PLoS One. 2017;12(1):e0171175. doi:10.1371/journal.pone.0171175
  • Simpson G, Thompson PN, Saegerman C, et al. Brucellosis in wildlife in Africa: a systematic review and meta-analysis. Sci Rep. 2021;11(1):5960. doi:10.1038/s41598-021-85441-w
  • O’Brien MP, Beja-Pereira A, Anderson N, et al. Brucellosis transmission between wildlife and livestock in the greater Yellowstone ecosystem: inferences from DNA genotyping. J Wildl Dis. 2017;53(2):339–343. doi:10.7589/2015-12-329
  • Yon L, Duff JP, Ågren EO, et al. Recent Changes In Infectious Diseases In European Wildlife. J Wildl Dis. 2019;55(1):3–43. doi:10.7589/2017-07-172
  • Mick V, Le Carrou G, Corde Y, Game Y, Jay M, Garin-Bastuji B. Brucella melitensis in France: persistence in wildlife and probable spillover from Alpine ibex to domestic animals. PLoS One. 2014;9(4):e94168. doi:10.1371/journal.pone.0094168
  • González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: reservoirs and niches in animals and humans. Pathogens. 2021;10(2):186. doi:10.3390/pathogens10020186
  • Ng PC, Kirkness EF. Whole genome sequencing. Gene Variat. 2010;628:215–226. doi:10.1007/978-1-60327-367-1_12
  • Holzer K, Hoelzle LE, Wareth G. Genetic comparison of Brucella spp. and Ochrobactrum spp. erroneously included into the genus Brucella confirms separate genera. Ger J Vet Res. 2023;3(1):31–37. doi:10.51585/gjvr.2023.1.0050
  • Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella genomics: macro and micro evolution. Int J Mol Sci. 2020;21(20):7749. doi:10.3390/ijms21207749
  • Rajendhran J. Genomic insights into Brucella. Infect Genet Evol. 2021;87:104635. doi:10.1016/j.meegid.2020.104635
  • Yagupsky P, Morata P, Colmenero JD. Laboratory diagnosis of human brucellosis. Clin Microbiol Rev. 2019;33(1). doi:10.1128/CMR.00073-19
  • Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the Brucellosis Laboratory. INRA Publications; 1988.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. Clinical and Laboratory Standards Institute; 2022.
  • Liu ZG, Di DD, Wang M, et al. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Ulanqab of Inner Mongolia, China. BMC Infect Dis. 2018;18(1):43. doi:10.1186/s12879-018-2947-6
  • Matar GM, Khneisser IA, Abdelnoor AM. Rapid laboratory confirmation of human brucellosis by PCR analysis of a target sequence on the 31-kilodalton Brucella antigen DNA. J Clin Microbiol. 1996;34(2):477–478. doi:10.1128/jcm.34.2.477-478.1996
  • Yuan HT, Wang CL, Liu LN, et al. Epidemiologically characteristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in hinggan league of the inner mongolia autonomous Region, China. Infect Dis Poverty. 2020;9(1):79. doi:10.1186/s40249-020-00697-0
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: bIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi:10.12688/wellcomeopenres.14826.1
  • Liu ZG, Di DD, Wang M, et al. MLVA genotyping characteristics of human Brucella melitensis isolated from Ulanqab of Inner Mongolia, China. Front Microbiol. 2017;8:6. doi:10.3389/fmicb.2017.00006
  • Xue H, Zhao Z, Wang J, et al. Native circulating Brucella melitensis lineages causing a brucellosis epidemic in Qinghai, China. Front Microbiol. 2023;14:1233686. doi:10.3389/fmicb.2023.1233686
  • Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–1967. doi:10.1093/bioinformatics/btp336
  • Lin SH, Liao YC, Watson M. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One. 2013;8(3):e60843. doi:10.1371/journal.pone.0060843
  • Xu M, Guo L, Gu S, et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience. 2020;9(9):9. doi:10.1093/gigascience/giaa094
  • Liu ZG, Cao XA, Wang M, et al. Whole-Genome Sequencing of a Brucella melitensis Strain (BMWS93) isolated from a bank clerk and exhibiting complete resistance to rifampin. Microbiol Resour Announc. 2019;8(33). doi:10.1128/MRA.01645-18
  • Brambila-Tapia AJ, Armenta-Medina D, Rivera-Gomez N, Perez-Rueda E, Cloeckaert A. Main functions and taxonomic distribution of virulence genes in Brucella melitensis 16 M. PLoS One. 2014;9(6):e100349. doi:10.1371/journal.pone.0100349
  • Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–2618. doi:10.1093/nar/29.12.2607
  • Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–580. doi:10.1093/nar/27.2.573
  • Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021;49(16):9077–9096. doi:10.1093/nar/gkab688
  • Hsiao W, Wan I, Jones SJ, Brinkman FS. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics. 2003;19(3):418–420. doi:10.1093/bioinformatics/btg004
  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39(suppl):W347–52. doi:10.1093/nar/gkr485
  • Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:W52–7. doi:10.1093/nar/gkm360
  • Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 2012;40:D641–5. doi:10.1093/nar/gkr989
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525. doi:10.1093/nar/gkz935
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14(1):e1005944. doi:10.1371/journal.pcbi.1005944
  • Harris RS. Improved Pairwise Alignment of Genomic DNA. The Pennsylvania State University; 2007.
  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi:10.1093/bioinformatics/btl158
  • Criscuolo A. morePhyML: improving the phylogenetic tree space exploration with PhyML 3. Mol Phylogenet Evol. 2011;61(3):944–948. doi:10.1016/j.ympev.2011.08.029
  • Xi J, Duan R, He Z, et al. First case report of human plague caused by excavation, skinning, and eating of a hibernating marmot (Marmota himalayana). Front Public Health. 2022;10:910872. doi:10.3389/fpubh.2022.910872
  • Sun M, Liu M, Zhang X, et al. First identification of a Brucella abortus biovar 4 strain from yak in Tibet, China. Vet Microbiol. 2020;247:108751. doi:10.1016/j.vetmic.2020.108751
  • Yan B, Zhu Q, Xu J, et al. Brucella in Himalayan Marmots (Marmota himalayana). J Wildl Dis. 2020;56(3):730–732. doi:10.7589/2019-09-237
  • Dadar M, Shahali Y, Fakhri Y, Godfroid J. The global epidemiology of Brucella infections in terrestrial wildlife: a meta-analysis. Transbound Emerg Dis. 2021;68(2):715–729. doi:10.1111/tbed.13735
  • Dadar M, Alamian S, Brangsch H, et al. Determination of virulence-associated genes and antimicrobial resistance profiles in Brucella isolates recovered from humans and animals in Iran using NGS technology. Pathogens. 2023;12(1):82. doi:10.3390/pathogens12010082
  • Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the hidden credentials of Brucella virulence. Microbiol Mol Biol Rev. 2021;85:1. doi:10.1128/MMBR.00021-19
  • Xiong X, Li B, Zhou Z, et al. The VirB system plays a crucial role in Brucella intracellular infection. Int J Mol Sci. 2021;22(24):13637. doi:10.3390/ijms222413637
  • Döhmer PH, Valguarnera E, Czibener C, Ugalde JE. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 2014;16(3):396–410. doi:10.1111/cmi.12224
  • Slavetinsky CJ, Hauser JN, Gekeler C, et al. Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. Elife. 2022:11. doi:10.7554/eLife.66376
  • Yang X, Wang Y, Li J, et al. Genetic characteristics of an amikacin-resistant Brucella abortus strain first isolated from Marmota himalayana. Microb Pathog. 2022;164:105402. doi:10.1016/j.micpath.2022.105402
  • Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA. The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol. 2013;51(1):429–451. doi:10.1146/annurev-phyto-081211-173010