130
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Recent Transmission and Associated Risk Factor of Mycobacterium tuberculosis in Golmud City, China

, , , , , , , & show all
Pages 417-425 | Received 25 Aug 2023, Accepted 05 Dec 2023, Published online: 31 Jan 2024

References

  • World Health Organization. Global Tuberculosis Report 2022. Geneva: World Health Organization; 2022.
  • Yang C, Sobkowiak B, Naidu V, et al. Phylogeography and transmission of M. tuberculosis in Moldova: a prospective genomic analysis. PLoS Med. 2022;19(2):e1003933. doi:10.1371/journal.pmed.1003933
  • Kohl TA, Harmsen D, Rothgänger J, Walker T, Diel R, Niemann S. Harmonized genome wide typing of tubercle bacilli using a web-based gene-by-gene nomenclature system. EBioMedicine. 2018;34:131–138. doi:10.1016/j.ebiom.2018.07.030
  • Guerra-Assunção JA, Crampin AC, Houben RM, et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife. 2015;4. doi:10.7554/eLife.05166
  • Jiang Q, Liu Q, Ji L, et al. Citywide transmission of multidrug-resistant tuberculosis under China’s Rapid Urbanization: a retrospective population-based genomic spatial epidemiological study. Clin Infect Dis. 2020;71(1):142–151. doi:10.1093/cid/ciz790
  • Lalor MK, Casali N, Walker TM, et al. The use of whole-genome sequencing in cluster investigation of a multidrug-resistant tuberculosis outbreak. Europ resp J. 2018;51(6):1702313.
  • Liu D, Huang F, Zhang G, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect. 2021. doi:10.1016/j.cmi.2021.09.014
  • Cirillo DM, Cabibbe AM, De Filippo MR, et al. Use of WGS in Mycobacterium tuberculosis routine diagnosis. Int J Mycobacteriol. 2016;5(Suppl 1):S252–S253. doi:10.1016/j.ijmyco.2016.09.053
  • Song Z, Liu C, He W, et al. Insight into the drug-resistant characteristics and genetic diversity of multidrug-resistant Mycobacterium tuberculosis in China. Microbiol Spectr. 2023;11(5):e0132423. doi:10.1128/spectrum.01324-23
  • World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021.
  • Li M, Guo M, Peng Y, et al. High proportion of tuberculosis transmission among social contacts in rural China: a 12-year prospective population-based genomic epidemiological study. Emerg Microbes Infect. 2022;11(1):2102–2111. doi:10.1080/22221751.2022.2112912
  • Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis. 2017;17(3):275–284. doi:10.1016/s1473-3099(16)30418-2
  • Yang C, Lu L, Warren JL, et al. Internal migration and transmission dynamics of tuberculosis in Shanghai, China: an epidemiological, spatial, genomic analysis. Lancet Infect Dis. 2018;18(7):788–795. doi:10.1016/s1473-3099(18)30218-4
  • Rao HX, Zhang X, Zhao L, et al. Spatial transmission and meteorological determinants of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis. Infect Dis Poverty. 2016;5(1):45. doi:10.1186/s40249-016-0139-4
  • Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa1108789
  • The CC. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 2022;20(8):e3001721. doi:10.1371/journal.pbio.3001721
  • He W, Tan Y, Liu C, et al. Drug-resistant characteristics, genetic diversity, and transmission dynamics of rifampicin-resistant Mycobacterium tuberculosis in Hunan, china, revealed by whole-genome sequencing. Microbiol Spectr. 2022;10(1):e0154321. doi:10.1128/spectrum.01543-21
  • Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J Clin Microbiol. 2005;43(6):2996–2997. doi:10.1128/jcm.43.6.2996-2997.2005
  • Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023. doi:10.1093/nar/gkad359
  • Guo Q, Pan Y, Yang Z, et al. Epidemiology and Clinical Characteristics of Pediatric Drug-Resistant Tuberculosis in Chongqing, China. PLoS One. 2016;11(3):e0151303. doi:10.1371/journal.pone.0151303
  • Jones RC, Harris LG, Morgan S, et al. Phylogenetic analysis of Mycobacterium tuberculosis strains in Wales by use of core genome multilocus sequence typing to analyze whole-genome sequencing data. J Clin Microbiol. 2019;57(6):10–128.
  • Zhao B, Liu C, Fan J, et al. Transmission and drug resistance genotype of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr. 2022;10(5):e0240521. doi:10.1128/spectrum.02405-21
  • Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7(1):51. doi:10.1186/s13073-015-0164-0
  • Xia H, Song Y, Zheng Y, et al. Detection of Mycobacterium tuberculosis rifampicin resistance conferred by borderline rpoB mutations: xpert MTB/RIF is superior to phenotypic drug susceptibility testing. Infect Drug Resist. 2022;15:1345–1352. doi:10.2147/idr.S358301
  • Liu Q, Ma A, Wei L, et al. China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol. 2018;2(12):1982–1992. doi:10.1038/s41559-018-0680-6
  • Shitikov E, Kolchenko S, Mokrousov I, et al. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017;7(1):9227. doi:10.1038/s41598-017-10018-5
  • Ji L, Tao FX, Yu YF, et al. Whole-genome sequencing to characterize the genetic structure and transmission risk of Mycobacterium tuberculosis in Yichang city of China. Front Public Health. 2022;10:1047965. doi:10.3389/fpubh.2022.1047965
  • Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10(2):e1001387. doi:10.1371/journal.pmed.1001387
  • Meehan CJ, Moris P, Kohl TA, et al. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine. 2018;37:410–416. doi:10.1016/j.ebiom.2018.10.013
  • Nikolayevskyy V, Niemann S, Anthony R, et al. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect. 2019;25(11):1377–1382. doi:10.1016/j.cmi.2019.03.022
  • Jajou R, Kohl TA, Walker T, et al. Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases. Euro Surveill. 2019;24(50). doi:10.2807/1560-7917.Es.2019.24.50.1900130
  • Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98:77–85. doi:10.1016/j.tube.2016.02.009
  • Feng M, Xu Y, Zhang X, et al. Risk factors of multidrug-resistant tuberculosis in China: a meta-analysis. Public Health Nurs. 2019;36(3):257–269. doi:10.1111/phn.12582
  • Cai X, Zhang D, Yan Y, Tan D, Xu Y. [Meta-analysis on risk factors of multidrug resistant tuberculosis in China]. Zhonghua liu xing bing xue za zhi. 2015;36(12):1424–1429. Chinese.
  • Shi W, Davies Forsman L, Hu Y, et al. Improved treatment outcome of multidrug-resistant tuberculosis with the use of a rapid molecular test to detect drug resistance in China. Int J Infect Dis. 2020;96:390–397. doi:10.1016/j.ijid.2020.04.049
  • Allix-Béguec C, Arandjelovic I, Bi L, et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med. 2018;379(15):1403–1415. doi:10.1056/NEJMoa1800474