34
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Effectiveness of Polyhexanide in Treating Wound Infections Due to Methicillin-Resistant Staphylococcus Aureus: A Prospective Analysis

ORCID Icon, , , , ORCID Icon &
Pages 1927-1935 | Received 29 Nov 2023, Accepted 27 Mar 2024, Published online: 15 May 2024

References

  • Cordova KB, Grenier N, Chang KH, et al. Preoperative methicillin-resistant Staphylococcus aureus screening in Mohs surgery appears to decrease postoperative infections. Dermatol Surg. 2010;36(10):1537–1540. doi:10.1111/j.1524-4725.2010.01678.x
  • Bassetti M, Carnelutti A, Righi E. The role of methicillin-resistant Staphylococcus aureus in skin and soft tissue infections. Curr Opin Infect Dis. 2017;30:150–157. doi:10.1097/QCO.0000000000000353
  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. doi:10.1080/21505594.2017.1313372
  • Malone M, Bjarnsholt T, McBain AJ, et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care. 2017;26(1):20–25. doi:10.12968/jowc.2017.26.1.20
  • Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10 Suppl 1(Suppl 1):9–14. doi:10.1111/iwj.12175
  • Strobel RM, Leonhardt M, Krochmann A, et al. Reduction of Postoperative Wound Infections by Antiseptica (RECIPE)?: a Randomized Controlled Trial. Ann Surg. 2020;272(1):55–64. doi:10.1097/SLA.0000000000003645
  • Durante CM, Greco A, Sidoli O, et al. Evaluation of the effectiveness of a polyhexanide and propyl betaine-based gel in the treatment of chronic wounds. Minerva Chir. 2014;69(5):283–292.
  • Bellingeri A, Falciani F, Traspedini P, et al. Effect of a wound cleansing solution on wound bed preparation and inflammation in chronic wounds: a single-blind RCT. J Wound Care. 2016;25(3):160, 162–6, 168. doi:10.12968/jowc.2016.25.3.160
  • Romanelli M, Dini V, Barbanera S, et al. Evaluation of the efficacy and tolerability of a solution containing propyl betaine and polihexanide for wound irrigation. Skin Pharmacol Physiol. 2010;23 Suppl:41–44. doi:10.1159/000318266
  • Fabry W, Kock HJ. In-vitro activity of polyhexanide alone and in combination with antibiotics against Staphylococcus aureus. J Hosp Infect. 2014;86(1):68–72. doi:10.1016/j.jhin.2013.10.002
  • He X, Dai L, Ye L, et al. A Vehicle-Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing. Adv Sci. 2022;9(14):e2105223. doi:10.1002/advs.202105223
  • Barreto R, Barrois B, Lambert J, et al. Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents. 2020;56(3):106064. doi:10.1016/j.ijantimicag.2020.106064
  • Taha M, Arulanandam R, Chen A, et al. Combining povidone-iodine with vancomycin can be beneficial in reducing early biofilm formation of methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus on titanium surface. J Biomed Mater Res B Appl Biomater. 2023;111(5):1133–1141. doi:10.1002/jbm.b.35220
  • Ikeda T, Tazuke S, Watanabe M. Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. Biochim Biophys Actan. 1983;735(3):380–386. doi:10.1016/0005-2736(83)90152-9
  • Eberlein T, Assadian O. Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination. Skin Pharmacol Physiol. 2010;23:45–51. doi:10.1159/000318267
  • Harris C, Bates-Jensen B, Parslow N, et al. Bates-Jensen wound assessment tool: pictorial guide validation project. J Wound Ostomy Continence Nurs. 2020;37(3):253–259. doi:10.1097/WON.0b013e3181d73aab
  • Alminderej F, Bakari S, Almundarij TI, et al. Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and In Silico Study on S. aureus tyrosyl-tRNASynthetase Protein. Plants. 2020;10(2):205. doi:10.3390/plants10020205
  • de Mattos IB, Holzer JCJ, Tuca AC, et al. Uptake of PHMB in a bacterial nanocellulose-based wound dressing: a feasible clinical procedure. Burns. 2020;45(4):898–904. doi:10.1016/j.burns.2018.10.023
  • Koch G, Yepes A, Forstner KU, et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell. 2004;158:1060–1071. doi:10.1016/j.cell.2014.06.046
  • Wang Z, Kong L, Liu Y, et al. A Phage Lysin Fused to a Cell-Penetrating Peptide Kills Intracellular Methicillin-Resistant Staphylococcus aureus in Keratinocytes and Has Potential as a Treatment for Skin Infections in Mice. Appl Environ Microbiol. 2018:84. doi:10.1128/AEM.00380-18
  • Al-Asousi F, Dadgostar A, Javer A. Sinonasal methicillin-resistant Staphylococcus aureus: updates on treatment. Curr Opin Otolaryngol Head Neck Surg. 2017;25:19–23. doi:10.1097/MOO.0000000000000324
  • Opasanon S, Muangman P, Namviriyachote N. Clinical effectiveness of alginate silver dressing in outpatient management of partial-thickness burns. Int Wound J. 2010;7(6):467–471. doi:10.1111/j.1742-481X.2010.00718.x
  • Hornschuh M, Zwicker P, Schmidt T, et al. In vitro evaluation of contact-active antibacterial efficacy of Ti-Al-V alloys coated with the antimicrobial agent PHMB. Acta Biomater. 2020;106:376–386. doi:10.1016/j.actbio.2020.02.016
  • He X, Qian Y, Wu C, et al. Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection. Adv Mater. 2023;35(26):e2211432. doi:10.1002/adma.202211432
  • Narayanan N, Adams CD, Kubiak DW, et al. Evaluation of treatment options for methicillin-resistant Staphylococcus aureus infections in the obese patient. Infect Drug Resist. 2019;12:877–891. doi:10.2147/IDR.S196264
  • Kuznetsova MV, Encheva YA, Samartsev VA. Influence of Chlorhexidine and Prontosan on Dual Species and Monospecies Biofilms Formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiot Khimioter. 2015;60(11–12):15–22.
  • Ciprandi G, Ramsay S, Budkevich L, et al. A retrospective systematic data review on the use of a polihexanide-containing product on burns in children. J Tissue Viability. 2018;27:244–248. doi:10.1016/j.jtv.2018.08.001
  • Günther F, Blessing B, Dapunt U, et al. Ability of chlorhexidine, octenidine, polyhexanide and chloroxylenol to inhibit metabolism of biofilm-forming clinical multidrug-resistant organisms. J Infect Prev. 2021;22(1):12–18. doi:10.1177/1757177420963829
  • Davis SC, Harding A, Gil J, et al. Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J. 2017;14(6):937–944. doi:10.1111/iwj.12734
  • Wild T, Bruckner M, Payrich M, et al. Eradication of methicillin-resistant Staphylococcus aureus in pressure ulcers comparing a polyhexanide-containing cellulose dressing with polyhexanide swabs in a prospective randomized study. Adv Skin Wound Care. 2021;25(1):17–22. doi:10.1097/01.ASW.0000410686.14363.ea
  • Landelle C, von Dach E, Haustein T. Randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy of polyhexanide for topical decolonization of MRSA carriers. J Antimicrob Chemother. 2016;71(2):531–538. doi:10.1093/jac/dkv331