151
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Insights into the in-vitro Susceptibility and Drug–Drug Interaction Profiles Against Drug-Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates in Amhara, Ethiopia

ORCID Icon, , , , , & ORCID Icon show all
Pages 89-107 | Received 19 Sep 2023, Accepted 05 Jan 2024, Published online: 10 Jan 2024

References

  • World Health Organization. Global TB report 2022. Geneva: World Health Organization; 2022. Available from: https://www.who.int/publications/i/item/9789240061729. Accessed January 5, 2024.
  • World Health Organizaton. Treatment Guidelines for Drug-Resistant Tuberculosis. Geneva, Switzerland: World Health Organizaton; 2016.
  • Gardee Y, Dreyer AW, Koornhof HJ, Omar SV, Silva P, Bhyat Z. Evaluation of the GenoType MTBDRsl tuberculosis isolates in South Africa. J Clin Microbiol. 2017;55(3):791–800. doi:10.1128/JCM.01865-16
  • Mgogwe J, Semvua H, Massay O, Nyombi B, Chilongola J. Demographic and clinical determinants of multi drug resistant tuberculosis among HIV infected patients in Tanzania. Int J Med Med Sci. 2020;12(2):23–32. doi:10.5897/IJMMS2020.1415
  • Sharma SK, Mohan A. Multidrug-resistant tuberculosis: a menace that threatens to destabilize tuberculosis control. Chest. 2006;130(1):261–272. doi:10.1378/chest.130.1.261
  • Mesfin EA, Beyene D, Tesfaye A, et al. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia. PLoS One. 2018;3(16):1–16. doi:10.1371/journal.pone.0197737
  • Ruesen C, Riza AL, Florescu A, et al. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania. Sci Rep. 2018;8(1):1–8. doi:10.1038/s41598-018-27962-5
  • World Health Organization. Line probe assays for detection of drug-resistant tuberculosis: interpretation and reporting manual for laboratory staff and clinicians. World Health Organization; 2022. Available from: https://www.who.int/publications/i/item/9789240046665. Accessed January 5, 2024.
  • Hain LifeScience. GenoType MTBDRplus v.2.0. Molecular genetic assay for identification of the M. tuberculosis complex and its resistance to rifampicin and isoniazid from clinical specimens and cultivated samples; 2015.
  • Seid A, Berhane N. Molecular mechanisms of genetic interaction (epistasis) in the evolution and management of antibiotic resistance tuberculosis: current consequence and future perspectives. Int J Pathog Res. 2021;6(2):58–70. doi:10.9734/ijpr/2021/v6i230160
  • Wilson JW, Nilsen DM, Marks SM. Multidrug-resistant tuberculosis in patients with human immunodeficiency virus. Management considerations within high-resourced settings. Ann Am Thorac Soc. 2020;17(1):16–23. doi:10.1513/AnnalsATS.201902-185CME
  • Khan MSA. Combination of Drugs: An Effective Approach for Enhancing the Efficacy of Antibiotics to Combat Drug Resistance. Springer Nature; 2019.
  • Pooranagangadevi N, Padmapriyadarsini C. Treatment of tuberculosis and the drug interactions associated with HIV-TB co-infection treatment. Front Trop Dis. 2022;3:1–11. doi:10.3389/fitd.2022.834013
  • Rey-jurado E, Tudó G, Antonio J, González-martín J. Synergistic effect of two combinations of antituberculous drugs against Mycobacterium tuberculosis. Tuberculosis. 2012;92(3):260–263.
  • Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD, Cardoso RF. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis. 2013;93(6):660–663. doi:10.1016/j.tube.2013.09.001
  • Caleffi-Ferracioli KR, Amaral RCR, Demitto FO, et al. Morphological changes and differentially expressed efflux pump genes in Mycobacterium tuberculosis exposed to a rifampicin and verapamil combination. Tuberculosis. 2016;97:65–72. doi:10.1016/j.tube.2015.12.010
  • de Souza Santos NC, de Lima Scodro RB, de Almeida AL, et al. Combinatory activity of linezolid and levofloxacin with antituberculosis drugs in Mycobacterium tuberculosis. Tuberculosis. 2018;111:41–44. doi:10.1016/j.tube.2018.05.005
  • Ying R, Huang X, Gao Y, et al. In vitro synergism of six antituberculosis agents against drug-resistant mycobacterium tuberculosis isolated from retreatment tuberculosis patients. Infect Drug Resist. 2021;14:3729–3736. doi:10.2147/IDR.S322563
  • Omollo C, Singh V, Kigondu E, et al. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant mycobacterium tuberculosis. Antimicrob Agents Chemother. 2021;65(5). doi:10.1128/AAC.02554-20
  • Getahun M, Blumberg HM, Ameni G, Beyene D, Kempker RR. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS One. 2022;17(9):1–10.
  • Schönfeld N, Bergmann T, Vesenbeckh S, et al. Minimal inhibitory concentrations of first-line drugs of multidrug -resistant tuberculosis isolates. Lung India. 2012;29(4):309–312. doi:10.4103/0970-2113.102794
  • Seid A, Girma Y, Abebe A, Dereb E, Kassa M, Berhane N. Characteristics of TB / HIV co-infection and patterns of multidrug-resistance tuberculosis in the Northwest Amhara, Ethiopia. Infect Drug Resist. 2023;16:3829–3845. doi:10.2147/IDR.S412951
  • GLI. Mycobacteriology laboratory manual. Global laboratory initiative; advancing TB diagnosis; 2014:47–51.
  • Pinhata JMW, Lemes RA, Simeão FCDS, De Souza AR, Chimara E, Ferrazoli L. Use of an immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex clinical isolates in routine diagnosis. J Med Microbiol. 2018;67(5):683–686. doi:10.1099/jmm.0.000726
  • Jaglal P, Pillay M, Mlisana K. Resazurin microtitre plate assay and Sensititre® MycoTB for detection of Mycobacterium tuberculosis resistance in a high tuberculosis resistance setting. Afr J Lab Med. 2019;8(1):1–9. doi:10.4102/ajlm.v8i1.840
  • Rakhmawatie MD, Wibawa T, Lisdiyanti P, et al. Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening. Heliyon. 2019;5(8):e02263. doi:10.1016/j.heliyon.2019.e02263
  • Rey-Jurado E, Tudó G, De La Bellacasa JP, Espasa M, González-Martín J. In vitro effect of three-drug combinations of antituberculous agents against multidrug-resistant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents. 2013;41(3):278–280. doi:10.1016/j.ijantimicag.2012.11.011
  • Patil SS, Mohite ST, Kulkarni SA, Udgaonkar US. Resazurin tube method: rapid, simple, and inexpensive method for detection of drug resistance in the clinical isolates of Mycobacterium tuberculosis. J Glob Infect Dis. 2014;6(4):151–156. doi:10.4103/0974-777X.145239
  • Jadaun GPS, Agarwal C, Sharma H, et al. Determination of ethambutol MICs for Mycobacterium tuberculosis and Mycobacterium avium isolates by resazurin microtitre assay. J Antimicrob Chemother. 2007;60(1):152–155. doi:10.1093/jac/dkm117
  • Dixit P, Singh U, Sharma P, Jain A. Evaluation of nitrate reduction assay, resazurin microtiter assay and microscopic observation drug susceptibility assay for first line antitubercular drug susceptibility testing of clinical isolates of M. tuberculosis. J Microbiol Methods. 2012;88(1):122–126. doi:10.1016/j.mimet.2011.11.006
  • Nguyen NTB, Molicotti P, Hung T, et al. Application of the resazurin microtitre assay for the detection of isoniazid and/or rifampicin resistant Mycobacterium tuberculosis clinical isolates in Central Vietnam. J Med Pharm. 2020;10:1.
  • Miyata M, Rogério Pavan F, Nakamura Sato D, et al. Comparison of resazurin microtiter assay performance and BACTEC MGIT 960 in the susceptibility testing of Brazilian clinical isolates of Mycobacterium tuberculosis to four first-line drugs. Brazilian J Microbiol. 2013;44(1):281–285. doi:10.1590/S1517-83822013005000028
  • Khalifa RA, Nasser MS, Gomaa AA, Osman NM, Salem HM. Resazurin microtiter assay plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt J Chest Dis Tuberc. 2013;62(2):241–247. doi:10.1016/j.ejcdt.2013.05.008
  • Hameed HMA, Fang C, Liu Z, et al. Characterization of genetic variants associated with rifampicin resistance level in Mycobacterium tuberculosis clinical isolates collected in Guangzhou Chest Hospital, China. Infect Drug Resist. 2022;15:5655–5666. doi:10.2147/IDR.S375869
  • Hameed HM, Islam MM, Chhotaray C, et al. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front Cell Infect Microbiol. 2018;8(114). doi:10.3389/fcimb.2018.00114
  • Shea J, Halse TA, Kohlerschmidt D, et al. Low-level rifampin resistance and rpoB mutations in Mycobacterium tuberculosis: an analysis of whole-genome sequencing and drug susceptibility test data in New York. J Clin Microbiol. 2021;59(4). doi:10.1128/JCM.01885-20
  • Jamieson FB, Guthrie JL, Neemuchwala A, Lastovetska O, Melano RG, Mehaffy C. Profiling of rpoB mutations and MICs for rifampin and rifabutin in mycobacterium tuberculosis. J Clin Microbiol. 2014;52(6):2157–2162. doi:10.1128/JCM.00691-14
  • Rukasha I, Said HM, Omar SV, et al. Correlation of rpoB mutations with minimal inhibitory concentration of rifampin and rifabutin in Mycobacterium tuberculosis in an HIV/AIDS endemic setting, South Africa. Front Microbiol. 2016;7:1–7. doi:10.3389/fmicb.2016.01947
  • Li MC, Lu J, Lu Y, et al. RpoB mutations and effects on rifampin resistance in mycobacterium tuberculosis. Infect Drug Resist. 2021;14:4119–4128. doi:10.2147/IDR.S333433
  • Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect. 2014;3:1.
  • Miotto P, Cabibbe AM, Borroni E, Degano M, Cirilloa DM. Role of disputed mutations in the rpoB gene in interpretation of automated liquid MGIT culture results for rifampin susceptibility testing of mycobacterium tuberculosis. J Clin Microbiol. 2018;56(5).
  • Torrea G, Kcs N, Van Deun A, et al. Variable ability of rapid tests to detect Mycobacterium tuberculosis rpoB mutations conferring phenotypically occult rifampicin resistance. Sci Rep. 2019;9:1–9. doi:10.1038/s41598-019-48401-z
  • Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health. 2018;11(5):605–610. doi:10.1016/j.jiph.2018.04.005
  • Brandis G, Pietsch F, Alemayehu R, Hughes D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2015;70(3):680–685. doi:10.1093/jac/dku434
  • Bhusal Y, Shiohira CM, Yamane N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int J Antimicrob Agents. 2005;26(4):292–297. doi:10.1016/j.ijantimicag.2005.05.005
  • Yan L, Zhang L, Yang H, Xiao H. In vitro synergism testing of three antimicrobial agents against multidrug- resistant and extensively drug-resistant Mycobacterium tuberculosis by checkerboard method. J Mol Pharm Org Process Res. 2015;3(1):3–6.
  • Mukonzo J, Aklillu E, Marconi V, Schinazi RF. Potential drug–drug interactions between antiretroviral therapy and treatment regimens for multi-drug resistant tuberculosis: implications for HIV care of MDR-TB co-infected individuals. Int J Infect Dis. 2019;83:98–101. doi:10.1016/j.ijid.2019.04.009
  • Li Q, Jiao W, Yin Q, et al. Positive epistasis of major low-cost drug resistance mutations rpoB 531-TTG and katG 315-ACC depends on the phylogenetic background of Mycobacterium tuberculosis strains. Int J Antimicrob Agents. 2017;49(6):757–762. doi:10.1016/j.ijantimicag.2017.02.009
  • Coban AY, Uzun M, Akgunes A, Durupinar B. Comparative evaluation of the microplate nitrate reductase assay and the resazurin microtitre assay for the rapid detection of multidrug resistant Mycobacterium tuberculosis clinical isolates. Mem Inst Oswaldo Cruz, Rio Janeiro. 2012;107(5):578–581. doi:10.1590/S0074-02762012000500002
  • Hundie GB, Woldemeskel D, Gessesse A, Cardona P-J. Evaluation of direct colorimetric MTT assay for rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. PLoS One. 2016;11(12):1–14. doi:10.1371/journal.pone.0169188
  • World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Isoniazid and the Rifamycins (Rifampicin, Rifabutin and Rifapentine). Geneva: World Health Organization; 2021.