176
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antimicrobial Resistance of Clostridioides difficile in Children from a Tertiary Pediatric Hospital in Shanghai, China

, ORCID Icon, , , , , , & show all
Pages 329-339 | Received 21 Sep 2023, Accepted 13 Dec 2023, Published online: 25 Jan 2024

References

  • Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13(4):206–216. doi:10.1038/nrgastro.2016.25
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48. doi:10.1093/cid/cix1085
  • Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence. 2023;14(1):2150452. doi:10.1080/21505594.2022.2150452
  • Krutova M, de Meij TGJ, Fitzpatrick F, Drew RJ, Wilcox MH, Kuijper EJ. How to: clostridioides difficile infection in children. Clin Microbiol Infect. 2022;28(8):1085–1090. doi:10.1016/j.cmi.2022.03.001
  • Wolf J, Kalocsai K, Fortuny C, et al. Safety and efficacy of fidaxomicin and vancomycin in children and adolescents with clostridioides (Clostridium) difficile infection: a phase 3, multicenter, randomized, single-blind clinical trial (SUNSHINE). Clin Infect Dis. 2020;71(10):2581–2588. doi:10.1093/cid/ciz1149
  • Peng Z, Jin D, Kim HB, et al. Update on antimicrobial resistance in clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol. 2017;55(7):1998–2008. doi:10.1128/JCM.02250-16
  • Sholeh M, Krutova M, Forouzesh M, et al. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):158. doi:10.1186/s13756-020-00815-5
  • Zhao H, Nickle DC, Zeng Z, et al. Global landscape of clostridioides difficile phylogeography, antibiotic susceptibility, and toxin polymorphisms by post-hoc whole-genome sequencing from the MODIFY I/II studies. Infect Dis Ther. 2021;10(2):853–870. doi:10.1007/s40121-021-00426-6
  • Darkoh C, Keita K, Odo C, et al. Emergence of clinical clostridioides difficile isolates with decreased susceptibility to vancomycin. Clin Infect Dis. 2022;74(1):120–126. doi:10.1093/cid/ciaa912
  • Li X, Xiao F, Li Y, et al. Characteristics and management of children with Clostridioides difficile infection at a tertiary pediatric hospital in China. Braz J Infect Dis. 2022;26(4):102380. doi:10.1016/j.bjid.2022.102380
  • Boekhoud IM, Hornung BVH, Sevilla E, et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun. 2020;11(1):598. doi:10.1038/s41467-020-14382-1
  • Boekhoud IM, Sidorov I, Nooij S, et al. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J Antimicrob Chemother. 2021;76(7):1731–1740. doi:10.1093/jac/dkab097
  • Olaitan AO, Dureja C, Youngblom MA, et al. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun. 2023;14(1):4130. doi:10.1038/s41467-023-39429-x
  • Deshpande A, Wu X, Huo W, Palmer KL, Hurdle JG. Chromosomal resistance to metronidazole in clostridioides difficile can be mediated by epistasis between iron homeostasis and oxidoreductases. Antimicrob Agents Chemother. 2020;64(8). doi:10.1128/AAC.00415-20
  • Shen WJ, Deshpande A, Hevener KE, et al. Constitutive expression of the cryptic vanGCd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. J Antimicrob Chemother. 2020;75(4):859–867. doi:10.1093/jac/dkz513
  • Eubank TA, Gonzales-Luna AJ, Hurdle JG, Garey KW. Genetic mechanisms of vancomycin resistance in clostridioides difficile: a systematic review. Antibiotics. 2022;11(2). doi:10.3390/antibiotics11020258
  • Pu M, Cho JM, Cunningham SA, et al. Plasmid acquisition alters vancomycin susceptibility in clostridioides difficile. Gastroenterology. 2021;160(3):941–945 e948. doi:10.1053/j.gastro.2020.10.046
  • CLSI. CaLSI: Performance Standards for Antimicrobial Susceptibility Testing. 32nd. CLSI supplement M100; 2022.
  • EUCAST. Clinical breakpoints and dosing of antibiotics; 2022. Available from: https://wwweucastorg/clinical_breakpoints/. Accessed January 08, 2024.
  • PubMLST. Clostridioides difficile. Available from: https://pubmlst.org/cdifficile/. Accessed January 8, 2024.
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi:10.1093/bioinformatics/btv421
  • Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. doi:10.1186/s13059-019-1832-y
  • iTOL. Interactive Tree of Life. Available from: https://itol.embl.de/itol.cgi. Accessed January 8, 2024.
  • VFDB. Available from: http://www.mgc.ac.cn/VFs/main.htm. Accessed January 8, 2024.
  • Resfinder. Available from: https://cge.cbs.dtu.dk/services/ResFinder. Accessed January 8, 2024.
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–D573. doi:10.1093/nar/gkw1004
  • Inouye M, Dashnow H, Raven LA, et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6(11):90. doi:10.1186/s13073-014-0090-6
  • Krutova M, Wilcox M, Kuijper E. Clostridioides difficile infection: are the three currently used antibiotic treatment options equal from pharmacological and microbiological points of view? Int J Infect Dis. 2022;124:118–123. doi:10.1016/j.ijid.2022.09.013
  • Nicholson MR, Mitchell PD, Alexander E, et al. Efficacy of fecal microbiota transplantation for clostridium difficile infection in children. Clin Gastroenterol Hepatol. 2020;18(3):612–619 e611. doi:10.1016/j.cgh.2019.04.037
  • Alvarez AM, Rathore MH. Clostridium difficile Infection in Children. Adv Pediatr. 2019;66:263–280. doi:10.1016/j.yapd.2019.03.010
  • Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–834. doi:10.1056/NEJMoa1408913
  • Nicholson MR, Thomsen IP, Slaughter JC, Creech CB, Edwards KM. Novel risk factors for recurrent Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;60(1):18–22. doi:10.1097/MPG.0000000000000553
  • Farowski F, Solbach P, Tsakmaklis A, et al. Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection. Dig Liver Dis. 2019;51(7):944–951. doi:10.1016/j.dld.2019.01.012
  • Wen X, Shen C, Xia J, et al. Whole-genome sequencing reveals the high nosocomial transmission and antimicrobial resistance of clostridioides difficile in a single center in China, a four-year retrospective study. Microbiol Spectr. 2022;10(1):e0132221. doi:10.1128/spectrum.01322-21
  • Xu X, Luo Y, Chen H, et al. Genomic evolution and virulence association of Clostridioides difficile sequence type 37 (ribotype 017) in China. Emerg Microbes Infect. 2021;10(1):1331–1345. doi:10.1080/22221751.2021.1943538
  • Gargis AS, Karlsson M, Paulick AL, et al. Reference susceptibility testing and genomic surveillance of clostridioides difficile, United States, 2012–17. Clin Infect Dis. 2023;76(5):890–896. doi:10.1093/cid/ciac817
  • Huang H, Weintraub A, Fang H, Wu S, Zhang Y, Nord CE. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe. 2010;16(6):633–635. doi:10.1016/j.anaerobe.2010.09.002
  • Greentree DH, Rice LB, Donskey CJ. Houston, we have a problem: reports of clostridioides difficile isolates with reduced vancomycin susceptibility. Clin Infect Dis. 2022;75(9):1661–1664. doi:10.1093/cid/ciac444
  • Peltier J, Courtin P, El Meouche I, et al. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile. Microbiology. 2013;159(Pt 7):1510–1520. doi:10.1099/mic.0.065060-0
  • Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology. 2001;147(Pt 10):2717–2728. doi:10.1099/00221287-147-10-2717
  • Roberts MC. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe. 2003;9(2):63–69. doi:10.1016/S1075-9964(03)00058-1
  • Dridi L, Tankovic J, Petit JC. CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist. 2004;10(3):191–196. doi:10.1089/mdr.2004.10.191
  • Liu J, Peng L, Su H, et al. Chromosome and plasmid features of two ST37 clostridioides difficile strains isolated in China reveal distinct multidrug resistance and virulence determinants. Microb Drug Resist. 2020;26(12):1503–1508. doi:10.1089/mdr.2019.0461