39
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Diagnostic Role of Metagenomic Next-Generation Sequencing in Tubercular Orthopedic Implant-Associated Infection

, , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 1951-1960 | Received 13 Oct 2023, Accepted 08 May 2024, Published online: 17 May 2024

References

  • Lu Y, Cai WJ, Ren Z, Han P. The role of staphylococcal biofilm on the surface of implants in orthopedic infection. Microorganisms. 2022;10(10):1909. doi:10.3390/microorganisms10101909
  • Depypere M, Morgenstern M, Kuehl R, et al. Pathogenesis and management of fracture-related infection. Clin Microbiol Infect. 2020;26(5):572–578. doi:10.1016/j.cmi.2019.08.006
  • Pérez-Jorge C, Valdazo-Rojo M, Blanco-García A, Esteban-Moreno J. Mycobacterium tuberculosis as cause of therapeutic failure in prosthetic joint infections. Enferm Infecc Microbiol Clin. 2014;32(3):204–205. doi:10.1016/j.eimc.2013.04.022
  • Chen WH, Jiang LS, Dai LY. Influence of bacteria on spinal implant-centered infection: an in vitro and in vivo experimental comparison between Staphylococcus aureus and mycobacterium tuberculosis. Spine. 2011;36(2):103–108. doi:10.1097/BRS.0b013e3181cb46ba
  • Marmor M, Parnes N, Dekel S. Tuberculosis infection complicating total knee arthroplasty: report of 3 cases and review of the literature. J Arthroplasty. 2004;19(3):397–400. doi:10.1016/j.arth.2003.10.015
  • Veloci S, Mencarini J, Lagi F, et al. Tubercular prosthetic joint infection: two case reports and literature review. Infection. 2018;46(1):55–68. doi:10.1007/s15010-017-1085-1
  • Mahale YJ, Aga N. Implant-associated mycobacterium tuberculosis infection following surgical management of fractures: a retrospective observational study. Bone Joint J. 2015;97:1.
  • Liu Y, Wang H, Li Y, Yu Z. Clinical application of metagenomic next-generation sequencing in tuberculosis diagnosis. Front Cell Infect Microbiol. 2023;12:984753. doi:10.3389/fcimb.2022.984753
  • Li T, Yan X, Du X, et al. Extrapulmonary tuberculosis in China: a national survey. Int J Infect Dis. 2023;128:69–77. doi:10.1016/j.ijid.2022.12.005
  • Han D, Li Z, Li R, Tan P, Zhang R, Li J. mNGS in clinical microbiology laboratories: on the road to maturity. Crit Rev Microbiol. 2019;45(5–6):668–685. doi:10.1080/1040841X.2019.1681933
  • Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. J Bone Joint Surg Am. 2018;100(2):147–154. doi:10.2106/JBJS.17.00434
  • Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309–1314.e2. doi:10.1016/j.arth.2018.02.078
  • Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: a consensus on definition from an international expert group. Injury. 2018;49(3):505–510. doi:10.1016/j.injury.2017.08.040
  • Shen H, Tang J, Wang Q, Jiang Y, Zhang X. Sonication of explanted prosthesis combined with incubation in BD bactec bottles for pathogen-based diagnosis of prosthetic joint infection. J Clin Microbiol. 2015;53(3):777–781. doi:10.1128/JCM.02863-14
  • Cai Y, Fang X, Chen Y, et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues. Int J Infect Dis. 2020;96:573–578. doi:10.1016/j.ijid.2020.05.125
  • Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect. 2020;81(4):567–574. doi:10.1016/j.jinf.2020.08.004
  • Uhel F, Corvaisier G, Poinsignon Y, et al.; Groupe d’Epidémiologie et Recherche en Infectiologie Clinique Centre-Ouest (GERICCO). Mycobacterium tuberculosis prosthetic joint infections: a case series and literature review. J Infect. 2019;78(1):27–34. doi:10.1016/j.jinf.2018.08.008
  • Tan J, Liu Y, Ehnert S, et al. The effectiveness of metagenomic next-generation sequencing in the diagnosis of prosthetic joint infection: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2022;12:875822. doi:10.3389/fcimb.2022.875822
  • Dhanasekaran S, Jenum S, Stavrum R, et al.; TB Trials Study Group. Effect of non-tuberculous Mycobacteria on host biomarkers potentially relevant for tuberculosis management. PLoS Negl Trop Dis. 2014;8(10):e3243. doi:10.1371/journal.pntd.0003243
  • Li Y, Yao XW, Tang L, et al. Diagnostic efficiency of metagenomic next-generation sequencing for suspected spinal tuberculosis in China: a multicenter prospective study. Front Microbiol. 2022;13:1018938. doi:10.3389/fmicb.2022.1018938
  • Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther. 2021;19(1):65–77. doi:10.1080/14787210.2020.1810565
  • Opota O, Mazza-Stalder J, Greub G, Jaton K. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect. 2019;25(11):1370–1376. doi:10.1016/j.cmi.2019.03.021
  • World Health Organization. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva: World Health Organization; 2013.
  • Zhou X, Wu H, Ruan Q, et al. Clinical evaluation of diagnosis efficacy of active mycobacterium tuberculosis complex infection via metagenomic next-generation sequencing of direct clinical samples. Front Cell Infect Microbiol. 2019;9:351. doi:10.3389/fcimb.2019.00351
  • Huang Z, Li W, Lee GC, et al. Metagenomic next-generation sequencing of synovial fluid demonstrates high accuracy in prosthetic joint infection diagnostics: mNGS for diagnosing PJI. Bone Joint Res. 2020;9(7):440–449. doi:10.1302/2046-3758.97.BJR-2019-0325.R2
  • Huang ZD, Zhang ZJ, Yang B, et al. Pathogenic detection by metagenomic next-generation sequencing in osteoarticular infections. Front Cell Infect Microbiol. 2020;10:471. doi:10.3389/fcimb.2020.00471
  • Yu Y, Wang S, Dong G, Niu Y. Diagnostic performance of metagenomic next⁃generation sequencing in the diagnosis of prosthetic joint infection using tissue specimens. Infect Drug Resist. 2023;16:1193–1201. doi:10.2147/IDR.S397260
  • Mei J, Hu H, Zhu S, et al. Diagnostic role of mNGS in polymicrobial periprosthetic joint infection. J Clin Med. 2023;12(5):1838. doi:10.3390/jcm12051838
  • Ha KY, Chung YG, Ryoo SJ. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine. 2005;30(1):38–43. doi:10.1097/01.brs.0000147801.63304.8a
  • Lu H, Ma L, Zhang H, et al. The comparison of metagenomic next-generation sequencing with conventional microbiological tests for identification of pathogens and antibiotic resistance genes in infectious diseases. Infect Drug Resist. 2022;15:6115–6128. doi:10.2147/IDR.S370964
  • Liu H, Zhang Y, Yang J, Liu Y, Chen J. Application of mNGS in the etiological analysis of lower respiratory tract infections and the prediction of drug resistance. Microbiol Spectr. 2022;10(1):e0250221. doi:10.1128/spectrum.02502-21