38
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Association Between ACE2 and Lung Diseases

, , , , , & show all
Pages 1771-1780 | Received 17 Oct 2023, Accepted 08 Feb 2024, Published online: 06 May 2024

References

  • Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) Converts angiotensin I to angiotensin 1-9. Circul Res. 2000;87(5):E1–9. doi:10.1161/01.RES.87.5.e1
  • Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1):59. doi:10.3390/v11010059
  • Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation. 2020;142(5):426–428. doi:10.1161/CIRCULATIONAHA.120.047049
  • Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6). doi:10.1084/jem.20200678
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi:10.1002/path.1570
  • Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614–14621. doi:10.1128/JVI.79.23.14614-14621.2005
  • Lumbers ER, Delforce SJ, Pringle KG, Smith GR. The lung, the heart, the novel coronavirus, and the renin-angiotensin system; the need for clinical trials. Front Med. 2020;7:248. doi:10.3389/fmed.2020.00248
  • Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circul Res. 2020;126(10):1456–1474. doi:10.1161/CIRCRESAHA.120.317015
  • Jacobs M, Van Eeckhoutte HP, Wijnant SRA, et al. Increased expression of ACE2, the SARS-CoV-2 entry receptor, in alveolar and bronchial epithelium of smokers and COPD subjects. Europ resp J. 2020;56(2):2002378. doi:10.1183/13993003.02378-2020
  • Liu A, Zhang X, Li R, et al. Overexpression of the SARS-CoV −2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 2021;253(1):17–30. doi:10.1002/path.5555
  • Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Europ resp J. 2020;55(5). doi:10.1183/13993003.00688-2020
  • Samelson AJ, Tran QD, Robinot R, et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat Cell Biol. 2022;24(1):24–34. doi:10.1038/s41556-021-00821-8
  • Nikiforuk AM, Kuchinski KS, Twa DDW, et al. The contrasting role of nasopharyngeal angiotensin converting enzyme 2 (ACE2) transcription in SARS-CoV-2 infection: a cross-sectional study of people tested for COVID-19 in British Columbia, Canada. EBioMedicine. 2021;66:103316. doi:10.1016/j.ebiom.2021.103316
  • Sepe S, Rossiello F, Cancila V, et al. DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging. EMBO Rep. 2022;23(2):e53658. doi:10.15252/embr.202153658
  • Jin X, Zhang J, Li Y, et al. Exogenous chemical exposure increased transcription levels of the host virus receptor involving coronavirus infection. Environ Sci Technol. 2022;56(3):1854–1863. doi:10.1021/acs.est.1c07172
  • Weekly epidemiological update on COVID-19; 2023. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-february-2023. Accessed April 20, 2024.
  • Gorbalenya AE, Baker SC, Baric RS. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiol. 2020;5(4):536–544. doi:10.1038/s41564-020-0695-z
  • Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi:10.1001/jama.2020.12839
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi:10.1126/science.abb2507
  • Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med. 2022;29(3). doi:10.1093/jtm/taac037
  • Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 disease: susceptibility, severity, and therapy. Front Cell Infect Microbiol. 2021;11:753721. doi:10.3389/fcimb.2021.753721
  • Khani E, Khiali S, Beheshtirouy S, Entezari-Maleki T. Potential pharmacologic treatments for COVID-19 smell and taste loss: a comprehensive review. Eur J Pharmacol. 2021;912:174582. doi:10.1016/j.ejphar.2021.174582
  • Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31). doi:10.1126/sciadv.abc5801
  • Yıldırım F, Karaman İ, Kaya A. Current situation in ARDS in the light of recent studies: classification, epidemiology and pharmacotherapeutics. Tuberkuloz ve toraks. 2021;69(4):535–546. doi:10.5578/tt.20219611
  • Banavasi H, Nguyen P, Osman H, Soubani AO. Management of ARDS - what works and what does not. Am J Med Sci. 2021;362(1):13–23. doi:10.1016/j.amjms.2020.12.019
  • Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388(10058):2416–2430. doi:10.1016/S0140-6736(16)00578-X
  • Yilin Z, Yandong N, Faguang J. Role of angiotensin-converting enzyme (ACE) and ACE2 in a rat model of smoke inhalation induced acute respiratory distress syndrome. Burns. 2015;41(7):1468–1477. doi:10.1016/j.burns.2015.04.010
  • Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. doi:10.1038/nature03712
  • Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92(7):726–730. doi:10.1002/jmv.25785
  • Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med. 2020;14(2):126–135. doi:10.1007/s11684-020-0767-8
  • Rurua M, Pachkoria E, Sanikidze T, et al. Impact of the Angiotensin-Converting Enzyme (ACE) inhibitors on the course of the acute respiratory distress syndrome (ARDS) developed during COVID-19 and Other severe respiratory infections under hyperferritinemia conditions: a cohort study. Clin Med Insights. 2023;17:11795484231180391. doi:10.1177/11795484231180391
  • Zhang X, Li S, Niu S. ACE2 and COVID-19 and the resulting ARDS. Postgrad Med J. 2020;96(1137):403–407. doi:10.1136/postgradmedj-2020-137935
  • Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. New Engl J Med. 2015;373(2):111–122. doi:10.1056/NEJMoa1411532
  • Vogelmeier CF, Román-Rodríguez M, Singh D, Han MK, Rodríguez-Roisin R, Ferguson GT. Goals of COPD treatment: focus on symptoms and exacerbations. Respir Med. 2020;166:105938. doi:10.1016/j.rmed.2020.105938
  • Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics. 2012;67(11):1335–1343. doi:10.6061/clinics/2012(11)19
  • Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet Respir Med. 2018;6(6):421–430. doi:10.1016/S2213-2600(18)30103-6
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032
  • Bando M, Miyazawa T, Shinohara H, Owada T, Terakado M, Sugiyama Y. An epidemiological study of the effects of statin use on airflow limitation in patients with chronic obstructive pulmonary disease. Respirology. 2012;17(3):493–498. doi:10.1111/j.1440-1843.2011.02116.x
  • Teramoto S, Suzuki M, Matsuse T, Ishii T, Fukuchi Y, Ouchi Y. Effects of angiotensin-converting enzyme inhibitors on spontaneous or stimulated generation of reactive oxygen species by bronchoalveolar lavage cells harvested from patients with or without chronic obstructive pulmonary disease. Jpn J Pharmacol. 2000;83(1):56–62. doi:10.1016/S0021-5198(19)30627-4
  • Bullock GR, Steyaert I, Bilbe G, et al. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Bio. 2001;115(2):117–124. doi:10.1007/s004180000235
  • Xue T, Wei N, Xin Z, Qingyu X. Angiotensin-converting enzyme-2 overexpression attenuates inflammation in rat model of chronic obstructive pulmonary disease. Inhalation Toxicol. 2014;26(1):14–22. doi:10.3109/08958378.2013.850563
  • Leung JM, Niikura M, Yang CWT, Sin DD. COVID-19 and COPD. Europ resp J. 2020;56(2):2002108. doi:10.1183/13993003.02108-2020
  • Fließer E, Birnhuber A, Marsh LM, et al. Dysbalance of ACE2 levels - a possible cause for severe COVID-19 outcome in COPD. J Pathol Clin Res. 2021;7(5):446–458. doi:10.1002/cjp2.224
  • Fraser DD, Patel MA, Van Nynatten LR, et al. Cross-immunity against SARS-COV-2 variants of concern in naturally infected critically ill COVID-19 patients. Heliyon. 2023;9(1):e12704. doi:10.1016/j.heliyon.2022.e12704
  • Nath KD, Burel JG, Shankar V, et al. Clinical factors associated with the humoral immune response to influenza vaccination in chronic obstructive pulmonary disease. Int J Chronic Obstr. 2014;9:51–56. doi:10.2147/COPD.S53590
  • Vos T, Abajobir AA, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10100):1211–1259. doi:10.1016/S0140-6736(17)32154-2
  • Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65. doi:10.1038/nri3786
  • Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80–88.e88. doi:10.1016/j.jaci.2020.05.004
  • Song J, Zeng M, Wang H, et al. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy. 2021;76(2):483–496. doi:10.1111/all.14517
  • Liu S, Zhi Y, Ying S. COVID-19 and asthma: reflection during the pandemic. Clin Rev Allergy Immunol. 2020;59(1):78–88. doi:10.1007/s12016-020-08797-3
  • Sajuthi SP, DeFord P, Li Y, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nat Commun. 2020;11(1):5139. doi:10.1038/s41467-020-18781-2
  • Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, et al. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol. 2015;172(9):2330–2342. doi:10.1111/bph.13057
  • Loubet P, Samih-Lenzi N, Galtier F, et al. Factors associated with poor outcomes among adults hospitalized for influenza in France: a three-year prospective multicenter study. J Clin Virol. 2016;79:68–73. doi:10.1016/j.jcv.2016.04.005
  • Guan W-J, Liang W-H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi:10.1183/13993003.00547-2020
  • Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi:10.1111/all.14238
  • Sunjaya AP, Allida SM, Di Tanna GL, Jenkins CR. Asthma and COVID-19 risk: a systematic review and meta-analysis. Europ resp J. 2022;59(3):2101209. doi:10.1183/13993003.01209-2021
  • Otunla A, Rees K, Dennison P, et al. Risks of infection, hospital and ICU admission, and death from COVID-19 in people with asthma: systematic review and meta-analyses. BMJ Evidence Based Med. 2022;27(5):263–273. doi:10.1136/bmjebm-2021-111788
  • Chhapola Shukla S. ACE2 expression in allergic airway disease may decrease the risk and severity of COVID-19. Europ Archiv Oto-Rhino-Laryngol. 2021;278(7):2637–2640. doi:10.1007/s00405-020-06408-7
  • Bloom CI. Covid-19 pandemic and asthma: what did we learn? Respirology. 2023;28(7):603–614. doi:10.1111/resp.14515
  • Gottschalk G, Knox K, Roy A. ACE2: at the crossroad of COVID-19 and lung cancer. Gene Rep. 2021;23:101077. doi:10.1016/j.genrep.2021.101077
  • Zhang L, Han X, Shi Y. Comparative analysis of SARS-CoV-2 receptor ACE2 expression in multiple solid tumors and matched non-diseased tissues. Infect Genet Evol. 2020;85:104428. doi:10.1016/j.meegid.2020.104428
  • Qian YR, Guo Y, Wan HY, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep. 2013;29(6):2408–2414. doi:10.3892/or.2013.2370
  • Cheng Q, Zhou L, Zhou J, Wan H, Li Q, Feng Y. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC. Oncol Rep. 2016;36(3):1403–1410. doi:10.3892/or.2016.4967
  • Xu K, Han H, Luo Y, Ye H, Lin H, Ni L. The angiotensin-converting enzyme inhibitory state promotes the transformation of non-small cell lung cancer blood supply pattern toward vasculogenic mimicry formation. Front Oncol. 2021;11:663671. doi:10.3389/fonc.2021.663671
  • Yao T, Wu Z, Wang Z, et al. Association between angiotensin-converting enzyme inhibitor-induced cough and the risk of lung cancer: a Mendelian randomization study. Front Pharmacol. 2023;14:1267924. doi:10.3389/fphar.2023.1267924
  • Wu Z, Yao T, Wang Z, et al. Association between angiotensin-converting enzyme inhibitors and the risk of lung cancer: a systematic review and meta-analysis. Br J Cancer. 2023;128(2):168–176. doi:10.1038/s41416-022-02029-5
  • Shenoy V, Kwon KC, Rathinasabapathy A, et al. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension. 2014;64(6):1248–1259. doi:10.1161/HYPERTENSIONAHA.114.03871
  • Hampl V, Herget J, Bíbová J, et al. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiolog Res. 2015;64(1):25–38. doi:10.33549/physiolres.932861
  • Yamazato Y, Ferreira AJ, Hong KH, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54(2):365–371. doi:10.1161/HYPERTENSIONAHA.108.125468
  • Zhang H, Rostami MR, Leopold PL, et al. Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium. Am J Respir Crit Care Med. 2020;202(2):219–229. doi:10.1164/rccm.202003-0541OC
  • Leung JM, Yang CX, Sin DD. COVID-19 and nicotine as a mediator of ACE-2. Europ resp J. 2020;55(6):2001261. doi:10.1183/13993003.01261-2020