65
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Carbapenem-Resistant Enterobacter cloacae Complex in Southwest China: Molecular Characteristics and Risk Factors Caused by NDM Producers

, ORCID Icon, , , , , , , & show all
Pages 1643-1652 | Received 26 Nov 2023, Accepted 12 Apr 2024, Published online: 29 Apr 2024

References

  • Liu S, Huang N, Zhou C, et al. Molecular mechanisms and epidemiology of carbapenem-resistant Enterobacter cloacae complex isolated from Chinese patients during 2004–2018. Infect Drug Resist. 2021;14:3647–3658. doi:10.2147/idr.S327595
  • Ganbold M, Seo J, Wi YM, Kwon KT, Ko KS. Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea. Front Microbiol. 2023;14:1122691. doi:10.3389/fmicb.2023.1122691
  • Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol. 2003;69(9):5306–5318. doi:10.1128/aem.69.9.5306-5318.2003
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3). doi:10.1128/cmr.00181-19
  • Girlich D, Ouzani S, Emeraud C, et al. Uncovering the novel Enterobacter cloacae complex species responsible for septic shock deaths in newborns: a cohort study. Lancet Microbe. 2021;2(10):e536–e544. doi:10.1016/s2666-5247(21)00098-7
  • Rahal A, Andreo A, Le Gallou F, et al. Enterobacter cloacae complex outbreak in a neonatal intensive care unit: multifaceted investigations and preventive measures are needed. J Hosp Infect. 2021;116:87–90. doi:10.1016/j.jhin.2021.07.012
  • Han M, Liu C, Xie H, et al. Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013–2021. Front Microbiol. 2023;14:1127948. doi:10.3389/fmicb.2023.1127948
  • Ma J, Song X, Li M, et al. Global spread of carbapenem-resistant Enterobacteriaceae: epidemiological features, resistance mechanisms, detection and therapy. Microbiol Res. 2023;266:127249. doi:10.1016/j.micres.2022.127249
  • Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol. 2022;12:823684. doi:10.3389/fcimb.2022.823684
  • Li X, Wang Q, Huang J, et al. Clonal outbreak of NDM-1-producing Enterobacter hormaechei belonging to high-risk international clone ST78 with the coexistence of tmexCD2-toprJ2 and mcr-9 in China. Int J Antimicrob Agents. 2023;61(6):106790. doi:10.1016/j.ijantimicag.2023.106790
  • Zhao M, He J, Zhang R, Feng J, Deng Y, Zhang J. Epidemiological characteristics of New Delhi Metallo-β-Lactamase-producing Enterobacteriaceae in the fourth hospital of Hebei medical university. BMC Infect Dis. 2023;23(1):298. doi:10.1186/s12879-023-08242-8
  • Li Z, Ding Z, Yang J, et al. Carbapenem-Resistant Klebsiella pneumoniae in Southwest China: molecular characteristics and risk factors caused by KPC and NDM Producers. Infect Drug Resist. 2021;14:3145–3158. doi:10.2147/idr.S324244
  • Sun L, Chen Y, Qu T, et al. Characterisation of a Novel Hybrid IncFII(pHN7A8):IncR:IncN Plasmid Co-Harboring bla(NDM-5) and bla(KPC-2) from a Clinical ST11 Carbapenem-Resistant Klebsiella pneumoniae Strain. Infect Drug Resist. 2023;16:7621–7628. doi:10.2147/idr.S435195
  • Bolourchi N, Giske CG, Nematzadeh S, et al. Comparative resistome and virulome analysis of clinical NDM-1-producing carbapenem-resistant Enterobacter cloacae complex. J Glob Antimicrob Resist. 2022;28:254–263. doi:10.1016/j.jgar.2022.01.021
  • Candela A, Guerrero-López A, Mateos M, et al. Automatic discrimination of species within the Enterobacter cloacae complex using matrix-assisted laser desorption ionization-time of flight mass spectrometry and supervised algorithms. J Clin Microbiol. 2023;61(4):e0104922. doi:10.1128/jcm.01049-22
  • Wu W, Feng Y, Zong Z. Precise species identification for Enterobacter: a genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov. mSystems. 2020;5(4):e00527–20. doi:10.1128/mSystems.00527-20.
  • Oshiro S, Tada T, Watanabe S, et al. Emergence and spread of carbapenem-resistant and aminoglycoside-panresistant Enterobacter cloacae complex isolates coproducing NDM-Type Metallo-β-Lactamase and 16S rRNA Methylase in Myanmar. mSphere. 2020;5(2):e00054–20 doi:10.1128/mSphere.00054-20.
  • Zhu Z, Xie X, Yu H, et al. Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter strains in China: a multicenter genomic study. Emerg Microbes Infect. 2023;12(1):2148562. doi:10.1080/22221751.2022.2148562
  • Sun L, Xu J, He F. Draft genome sequence data of a tigecycline-resistant Enterobacter cloacae ST93 clinical strain isolated from bloodstream infection. Data Brief. 2018;21:414–418. doi:10.1016/j.dib.2018.10.004
  • Jiang Y, Yang S, Deng S, Lu W, Huang Q, Xia Y. Epidemiology and resistance mechanisms of tigecycline- and carbapenem-resistant Enterobacter cloacae in Southwest China: a 5-year retrospective study. J Glob Antimicrob Resist. 2022;28:161–167. doi:10.1016/j.jgar.2022.01.005
  • Farhat N, Khan AU. Evolving trends of New Delhi Metallo-betalactamse (NDM) variants: a threat to antimicrobial resistance. Infect Genet Evol. 2020;86:104588. doi:10.1016/j.meegid.2020.104588
  • Jin C, Zhang J, Wang Q, et al. Molecular characterization of carbapenem-resistant Enterobacter cloacae in 11 Chinese cities. Front Microbiol. 2018;9:1597. doi:10.3389/fmicb.2018.01597
  • Yan Z, Ju X, Zhang Y, et al. Analysis of the transmission chain of carbapenem-resistant Enterobacter cloacae complex infections in clinical, intestinal and healthcare settings in Zhejiang province, China (2022–2023). Sci Total Environ. 2024;920:170635. doi:10.1016/j.scitotenv.2024.170635
  • Gartzonika K, Politi L, Mavroidi A, et al. High prevalence of clonally related ST182 NDM-1-producing Enterobacter cloacae complex clinical isolates in Greece. Int J Antimicrob Agents. 2023;62(1):106837. doi:10.1016/j.ijantimicag.2023.106837
  • Palica K, Deufel F, Skagseth S, et al. α-Aminophosphonate inhibitors of metallo-β-lactamases NDM-1 and VIM-2. RSC Med Chem. 2023;14(11):2277–2300. doi:10.1039/d3md00286a
  • Li X, Wang Q, Zheng J, et al. PHT427 as an effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Front Microbiol. 2023;14:1168052. doi:10.3389/fmicb.2023.1168052
  • Liu H, Tu Y, He J, et al. Emergence and plasmid cointegration-based evolution of NDM-1-producing ST107 Citrobacter freundii high-risk resistant clone in China. Int J Antimicrob Agents. 2024;63(2):107069. doi:10.1016/j.ijantimicag.2023.107069
  • Hu K, Zhang J, Zou J, et al. Molecular characterization of NDM-1-producing carbapenem-resistant E. cloacae complex from a tertiary hospital in Chongqing, China. Front Cell Infect Microbiol. 2022;12:935165. doi:10.3389/fcimb.2022.935165
  • Gomez-Simmonds A, Annavajhala MK, Wang Z, et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78. mBio. 2018;9(3):e00542–18 doi:10.1128/mBio.00542-18.
  • Lumbreras-Iglesias P, de Toro M, Vázquez X, García-Carús E, Rodicio MR, Fernández J. High-risk international clones ST66, ST171 and ST78 of Enterobacter cloacae complex causing blood stream infections in Spain and carrying bla(OXA-48) with or without mcr-9. J Infect Public Health. 2023;16(2):272–279. doi:10.1016/j.jiph.2022.12.015
  • Hu S, Xie W, Cheng Q, et al. Molecular eidemiology of carbapenem-resistant Enterobacter cloacae complex in a tertiary hospital in Shandong, China. BMC Microbiol. 2023;23(1):177. doi:10.1186/s12866-023-02913-x