81
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Hybrid Sequencing-Based Genomic Analysis of Klebsiella pneumoniae from Urinary Tract Infections Among Inpatients at a Tertiary Hospital in Beijing

, , , , , , , , , & ORCID Icon show all
Pages 1447-1457 | Received 15 Nov 2023, Accepted 26 Mar 2024, Published online: 11 Apr 2024

References

  • Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7(12):653–660. doi:10.1038/nrurol.2010.190
  • McLellan LK, Hunstad DA. Urinary tract infection: pathogenesis and outlook. Trends Mol Med. 2016;22(11):946–957. doi:10.1016/j.molmed.2016.09.003
  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–284. doi:10.1038/nrmicro3432
  • Wang J, Liu F, Tartari E, et al. The prevalence of healthcare-associated infections in mainland china: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(6):701–709. doi:10.1017/ice.2018.60
  • Yuan S, Shi Y, Li M, Hu X, Bai R. Trends in incidence of urinary tract infection in mainland China from 1990 to 2019. Int J Gen Med. 2021;14:1413–1420. doi:10.2147/IJGM.S305358
  • Krawczyk B, Wysocka M, Michalik M, Gołębiewska J. Urinary tract infections caused by K. pneumoniae in kidney transplant recipients – epidemiology, virulence and antibiotic resistance. Front Cell Infect Microbiol. 2022;12:1–14. doi:10.3389/fcimb.2022.861374
  • Perween N, Rai S, Nandwani S, Kumar SK. Retrospective analysis of urinary tract infection in the pediatric population at a tertiary care centre. Cureus. 2022;14(5). doi:10.7759/cureus.24796
  • Chapelle C, Gaborit B, Dumont R, Dinh A, Vallée M. Treatment of UTIs due to Klebsiella pneumoniae carbapenemase-producers: how to use new antibiotic drugs? a narrative review. Antibiotics. 2021;10(11):1332. doi:10.3390/antibiotics10111332
  • Zhang H, Zhang G, Yang Y, et al. Antimicrobial resistance comparison of Klebsiella pneumoniae pathogens isolated from intra-abdominal and urinary tract infections in different organs, hospital departments and regions of China between 2014 and 2017. J Microbiol Immunol Infect. 2021;54(4):639–648. doi:10.1016/j.jmii.2020.03.009
  • Liu X, Wu Y, Zhu Y, et al. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg Microbes Infect. 2022;11(1):648–661. doi:10.1080/22221751.2022.2036078
  • Xie Z, Jian J, Chen L. Analysis of antimicrobial susceptibility in bacterial pathogens associated with urinary tract infections from Beijing teaching hospital in China, 2009-2017. Can J Infect Dis Med Microbiol. 2023;2023. doi:10.1155/2023/4360342
  • Huang L, Huang C, Yan Y, Sun L, Li H. Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: a retrospective study from a tertiary general hospital during a 12-year period. Front Microbiol. 2022;12:1–10. doi:10.3389/fmicb.2021.813145
  • Liu X, Wang K, Chen J, et al. Clonal spread of carbapenem-resistant Klebsiella pneumoniae sequence type 11 in Chinese pediatric patients. Microbiol Spectr. 2022;10(6). doi:10.1128/spectrum.01919-22.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI M100-2021. Wayne, PA: Clinical and Laboratory Standards Institute; 2021.
  • Andrews S FastQC: a quality control tool for high throughput sequence data. Available from http//www.bioinformatics.babraham.ac.uk/projects/fastqc/.Accessed 15, Jun 2015.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170
  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):1–22. doi:10.1371/journal.pcbi.1005595
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Lam MMC, Wick RR, Watts SC, et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1). doi:10.1038/s41467-021-24448-3.
  • Gupta A, Jordan IK, Rishishwar L. stringMLST: a fast k-mer based tool for multilocus sequence typing. Bioinformatics. 2017;33(1):119–121. doi:10.1093/bioinformatics/btw586
  • Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinf. 2010;11(1). doi:10.1186/1471-2105-11-595
  • Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server):W181–W184. doi:10.1093/nar/gkn179
  • Ondov BD, Treangen TJ, Melsted P, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17(1). doi:10.1186/s13059-016-0997-x.
  • Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11(5):e1004041. doi:10.1371/journal.pcbi.1004041
  • Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453–4455. doi:10.1093/bioinformatics/btz305
  • Darriba D, Posada D, Kozlov AM. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37(1):291–294. doi:10.1093/molbev/msz189
  • Cannatelli A, D’Andrea MM, Giani T, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother. 2013;57(11):5521–5526. doi:10.1128/AAC.01480-13
  • Cristea OM, Avrămescu CS, Bălășoiu M, et al. Urinary tract infection with Klebsiella pneumoniae in patients with chronic kidney disease. Curr Heal Sci J. 2017;43:137–148.
  • Quan J, Dai H, Liao W, et al. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: a prospective multicenter study. J Infect. 2021;83(2):175–181. doi:10.1016/j.jinf.2021.06.004
  • Qi Y, Wei Z, Ji S, et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother. 2011;66(2):307–312. doi:10.1093/jac/dkq431
  • Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: virulence and antibiotic resistance. Microorganisms. 2019;7(5):1–14. doi:10.3390/microorganisms7050138
  • Tian GB, Doi Y, Shen J, et al. MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infect Dis. 2017;17(6):577. doi:10.1016/S1473-3099(17)30266-9
  • Li J, Tang M, Liu Z, et al. Molecular and clinical characterization of hypervirulent Klebsiella pneumoniae isolates from individuals with urinary tract infections. Front Cell Infect Microbiol. 2022;12:925440.
  • Chen T, Wang Y, Zhou Y, et al. Recombination drives evolution of carbapenem-resistant Klebsiella pneumoniae Sequence Type 11 KL47 to KL64 in China. Microbiol Spectr. 2023;11(1):e0110722.
  • Van Dorp L, Wang Q, Shaw LP, et al. Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains. Microb Genomics. 2019;5(4):1–11. doi:10.1099/mgen.0.000263
  • San Millan A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 2018;26(12):978–985. doi:10.1016/j.tim.2018.06.007
  • Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-1
  • Wyres KL, Nguyen TNT, Lam MMC, et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from south and Southeast Asia. Genome Med. 2020;12(1):1–16. doi:10.1186/s13073-019-0706-y
  • Martin MJ, Corey BW, Sannio F, et al. Anatomy of an extensively drug-resistant Klebsiella pneumoniae outbreak in Tuscany, Italy. Proc Natl Acad Sci U S A. 2021;118(48). doi:10.1073/pnas.2110227118.