48
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Predicting Antibiotic Tolerance in hvKP and cKP Respiratory Infections Through Biofilm Formation Analysis and Its Resistance Implications

, , , , ORCID Icon &
Pages 1529-1537 | Received 30 Nov 2023, Accepted 26 Mar 2024, Published online: 18 Apr 2024

References

  • Wahab S, Ahmad I, Irfan S, Siddiqua A, Usmani S, Ahmad MP. Pharmacological efficacy and safety of Glycyrrhiza glabra in the treatment of respiratory tract infections. Mini Reviews in Med Chem. 2022;22(11):1476–1494. doi:10.2174/1389557521666210927153001
  • Hobson CA, Pierrat G, Tenaillon O, et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022;66(9):e0044722. doi:10.1128/aac.00447-22
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Rev Microbiol. 2019;4(11):1919–1929. doi:10.1038/s41564-019-0492-8
  • Russo TA, MacDonald U. The galleria mellonella infection model does not accurately differentiate between hypervirulent and classical Klebsiella pneumoniae. mSphere. 2020;5(1). doi:10.1128/mSphere.00850-19
  • Liu C, Du P, Xiao N, Ji F, Russo TA, Guo J. Hypervirulent Klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence. 2020;11(1):1215–1224. doi:10.1080/21505594.2020.1809322
  • Wang Y, Hua M, Wang J, et al. Clonal dissemination of multidrug-resistant and hypervirulent Klebsiella pneumoniae clonal complex in a Chinese hospital. Pathogens. 2022;11(10):1202. doi:10.3390/pathogens11101202
  • Walker KA, Miller VL. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr Opin Microbiol. 2020;54:95–102. doi:10.1016/j.mib.2020.01.006
  • Nobrega DB, Calarga AP, Nascimento LC, et al. Molecular characterization of antimicrobial resistance in Klebsiella pneumoniae isolated from Brazilian dairy herds. J Dairy Sci. 2021;104(6):7210–7224. doi:10.3168/jds.2020-19569
  • Tang M, Kong X, Hao J, Liu J. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2020;11:581543. doi:10.3389/fmicb.2020.581543
  • Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Exp Rev Anti-Infective Ther. 2018;16(10):749–761. doi:10.1080/14787210.2018.1522249
  • Li L, Yu T, Ma Y, et al. The genetic structures of an Extensively Drug Resistant (XDR) Klebsiella pneumoniae and its plasmids. Front Cell Infect Microbiol. 2018;8:446. doi:10.3389/fcimb.2018.00446
  • Kidd TJ, Mills G, Sá-Pessoa J, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017;9(4):430–447. doi:10.15252/emmm.201607336
  • Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020;8(1):13. doi:10.1186/s40560-020-0429-6
  • Bonomo RA. β-lactamases: a focus on current challenges. Cold Spring Harb Perspect Med. 2017;7(1):a025239. doi:10.1101/cshperspect.a025239
  • Frère JM, Sauvage E, Kerff F. From ”an enzyme able to destroy penicillin” to carbapenemases: 70 years of beta-lactamase misbehaviour. Curr Drug Targets. 2016;17(9):974–982. doi:10.2174/1389450116666151001112859
  • Kil K-S, Darouiche RO, Hull RA, Mansouri MD, Musher DM. Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol. 1997;35(9):2370–2374. doi:10.1128/jcm.35.9.2370-2374.1997
  • Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12). doi:10.1128/JCM.00213-21
  • Russo TA, MacDonald U, Hassan S, et al. An assessment of siderophore production, mucoviscosity, and mouse infection models for defining the virulence spectrum of hypervirulent Klebsiella pneumoniae. Msphere. 2021;6(2). doi:10.1128/mSphere.00045-21.
  • Relucenti M, Familiari G, Donfrancesco O, et al. Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology. 2021;10(1):51. doi:10.3390/biology10010051
  • Wei T, Zou C, Qin J, et al. Emergence of hypervirulent ST11-K64 Klebsiella pneumoniae poses a serious clinical threat in older patients. Front Public Health. 2022;10:765624. doi:10.3389/fpubh.2022.765624
  • Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol. 2022;217:931–943. doi:10.1016/j.ijbiomac.2022.07.176
  • Shui J, Luo L, Xiang YG, Shi GM, Wu JL, Pan JH. 高毒力肺炎克雷伯菌生物被膜形成能力及耐药性分析 [Analysis of biofilm-forming ability and drug resistance for Hypervirulent Klebsiella pneumoniae]. Zhonghua yu fang yi xue za zhi. 2023;57(9):1452–1457. Chinese. doi:10.3760/cma.j.cn112150-20220929-00938