325
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review

&
Pages 449-462 | Received 21 Nov 2023, Accepted 26 Jan 2024, Published online: 02 Feb 2024

References

  • Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603. doi:10.1128/cmr.11.4.589
  • Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43(2):123–144. doi:10.1093/femsre/fuy043
  • Effah CY, Sun T, Liu S, et al. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19(1):1. doi:10.1186/s12941-019-0343-8
  • Giske CG, Monnet DL, Cars O, et al. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother. 2008;52(3):813–821. doi:10.1128/aac.01169-07
  • Zhu J, Wang T, Chen L, et al. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021;12:642484. doi:10.3389/fmicb.2021.642484
  • Huang X, Li X, An H, et al. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog. 2022;18(8):e1010693. doi:10.1371/journal.ppat.1010693
  • Doorduijn DJ, Rooijakkers SHM, van Schaik W, et al. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology. 2016;221(10):1102–1109. doi:10.1016/j.imbio.2016.06.014
  • Ahn D, Peñaloza H, Wang Z, et al. Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection. JCI Insight. 2016;1(17):e89704. doi:10.1172/jci.insight.89704
  • Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–740. doi:10.1038/nri2620
  • Scavino AF, Pedraza RO. The role of siderophores in plant growth-promoting bacteria. In: Maheshwari DK, Saraf M, Aeron A, editors. Bacteria in Agrobiology: Crop Productivity. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013:265–285.
  • Struve C, Krogfelt KA. Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol Lett. 2003;218(1):149–154. doi:10.1111/j.1574-6968.2003.tb11511.x
  • Liang Z, Wang Y, Lai Y, et al. Host defense against the infection of Klebsiella pneumoniae: new strategy to kill the bacterium in the era of antibiotics? Front Cell Infect Microbiol. 2022;12:1050396. doi:10.3389/fcimb.2022.1050396
  • Opoku-Temeng C, Malachowa N, Kobayashi SD, et al. Innate host defense against Klebsiella pneumoniae and the outlook for development of immunotherapies. J Innate Immun. 2022;14(3):167–181. doi:10.1159/000518679
  • Struve C, Roe CC, Stegger M, et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio. 2015;6(4):e00630. doi:10.1128/mbio.00630-15
  • Murphy CN, Mortensen MS, Krogfelt KA, et al. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun. 2013;81(8):3009–3017. doi:10.1128/iai.00348-13
  • Rosen DA, Hilliard JK, Tiemann KM, et al. Klebsiella pneumoniae fimK promotes virulence in murine pneumonia. J Infect Dis. 2016;213(4):649–658. doi:10.1093/infdis/jiv440
  • Cano V, March C, Insua JL, et al. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol. 2015;17(11):1537–1560. doi:10.1111/cmi.12466
  • Uppalapati SR, Sett A, Pathania R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020;11:589234. doi:10.3389/fmicb.2020.589234
  • Hsieh P-F, Liu J-Y, Pan Y-J, et al. Klebsiella pneumoniae peptidoglycan-associated lipoprotein and murein lipoprotein contribute to serum resistance, antiphagocytosis, and proinflammatory cytokine stimulation. J Infect Dis. 2013;208(10):1580–1589. doi:10.1093/infdis/jit384
  • Lee JC, Lee EJ, Lee JH, et al. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response. FEMS Microbiol Lett. 2012;331(1):17–24. doi:10.1111/j.1574-6968.2012.02549.x
  • Wei S, Xu T, Chen Y, et al. Autophagy, cell death, and cytokines in K. pneumoniae infection: therapeutic perspectives. Emerg Microbes Infect. 2023;12(1):2140607. doi:10.1080/22221751.2022.2140607
  • Ye Y, Tan S, Zhou X, et al. Inhibition of p-IκBα ubiquitylation by autophagy-related gene 7 to regulate inflammatory responses to bacterial infection. J Infect Dis. 2015;212(11):1816–1826. doi:10.1093/infdis/jiv301
  • Bokoch GM. Caspase-mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ. 1998;5(8):637–645. doi:10.1038/sj.cdd.4400405
  • Yang P-Y, Chen W-X, Chang F-Y, et al. HepG2 cells infected with Klebsiella pneumoniae show DNA laddering at apoptotic and necrotic stages. Apoptosis. 2012;17(2):154–163. doi:10.1007/s10495-011-0666-1
  • Wang Z, Ren J, Liu Q, et al. Hypermucoviscous Klebsiella pneumoniae infections induce platelet aggregation and apoptosis and inhibit maturation of megakaryocytes. Thromb Res. 2018;171:45–54. doi:10.1016/j.thromres.2018.09.053
  • Cheng J, Zhang J, Han B, et al. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells. J Dairy Sci. 2020;103(4):3493–3504. doi:10.3168/jds.2019-17458
  • Lee C-H, Chuah S-K, Tai W-C, et al. Delay in human neutrophil constitutive apoptosis after infection with Klebsiella pneumoniae serotype K1. Front Cell Infect Microbiol. 2017;7:87. doi:10.3389/fcimb.2017.00087
  • Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. doi:10.1111/imr.12534
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi:10.1038/nri.2016.58
  • Yang Y, Jiang G, Zhang P, et al. Programmed cell death and its role in inflammation. Military Med Res. 2015;2(1):12. doi:10.1186/s40779-015-0039-0
  • Hua K-F, Yang F-L, Chiu H-W, et al. Capsular polysaccharide is involved in NLRP3 inflammasome activation by Klebsiella pneumoniae serotype K1. Infect Immun. 2015;83(9):3396–3409. doi:10.1128/iai.00125-15
  • Ahn D, Prince A. Participation of necroptosis in the host response to acute bacterial pneumonia. J Innate Immun. 2017;9(3):262–270. doi:10.1159/000455100
  • Jondle CN, Gupta K, Mishra BB, et al. Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLoS Pathog. 2018;14(10):e1007338. doi:10.1371/journal.ppat.1007338
  • Chen SC, Mehrad B, Deng JC, et al. Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine. J Immunol. 2001;166(5):3362–3368. doi:10.4049/jimmunol.166.5.3362
  • Codo AC, Saraiva AC, Dos Santos LL, et al. Inhibition of inflammasome activation by a clinical strain of Klebsiella pneumoniae impairs efferocytosis and leads to bacterial dissemination. Cell Death Dis. 2018;9(12):1182. doi:10.1038/s41419-018-1214-5
  • Liu S, Zhang P, Liu Y, et al. Metabolic regulation protects mice against Klebsiella pneumoniae lung infection. Exp Lung Res. 2018;44(6):302–311. doi:10.1080/01902148.2018.1538396
  • Dong F, Wang B, Zhang L, et al. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS One. 2012;7(11):e51060. doi:10.1371/journal.pone.0051060
  • Sukumaran A, Pladwig S, Geddes-McAlister J. Zinc limitation in Klebsiella pneumoniae profiled by quantitative proteomics influences transcriptional regulation and cation transporter-associated capsule production. BMC Microbiol. 2021;21(1):43. doi:10.1186/s12866-021-02091-8
  • Saha D, Kundu S. A molecular interaction map of Klebsiella pneumoniae and its human host reveals potential mechanisms of host cell subversion. Front Microbiol. 2021;12:613067. doi:10.3389/fmicb.2021.613067
  • Ares MA, Sansabas A, Rodríguez-Valverde D, et al. The interaction of Klebsiella pneumoniae with lipid rafts-associated cholesterol increases macrophage-mediated phagocytosis due to down regulation of the capsule polysaccharide. Front Cell Infect Microbiol. 2019;9:255. doi:10.3389/fcimb.2019.00255
  • Ballén V, Gabasa Y, Ratia C, et al. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol. 2021;11:738223. doi:10.3389/fcimb.2021.738223
  • Kot B, Piechota M, Szweda P, et al. Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci Rep. 2023;13(1):4448. doi:10.1038/s41598-023-31086-w
  • Mendes G, Santos ML, Ramalho JF, et al. Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2023;14:1325077. doi:10.3389/fmicb.2023.1325077
  • Zhang J, Xu Y, Wang M, et al. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 2023;15(1):106. doi:10.1186/s13073-023-01260-w
  • Li S, Feng X, Li M, et al. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front Microbiol. 2023;14:1159912. doi:10.3389/fmicb.2023.1159912
  • Li Y, Kumar S, Zhang L, et al. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023;18(1):20230707. doi:10.1515/med-2023-0707
  • Shein AMS, Hongsing P, Abe S, et al. Will there ever be cure for chronic, life-changing colistin-resistant Klebsiella pneumoniae in urinary tract infection? Front Med Lausanne. 2021;8:806849. doi:10.3389/fmed.2021.806849
  • Shein AMS, Wannigama DL, Higgins PG, et al. Novel colistin-EDTA combination for successful eradication of colistin-resistant Klebsiella pneumoniae catheter-related biofilm infections. Sci Rep. 2021;11(1):21676. doi:10.1038/s41598-021-01052-5
  • Shein AMS, Wannigama DL, Higgins PG, et al. High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin-EDTA combination therapy. Sci Rep. 2022;12(1):12939. doi:10.1038/s41598-022-17083-5
  • Wannigama DL, Sithu Shein AM, Hurst C, et al. Ca-EDTA restores the activity of ceftazidime-avibactam or aztreonam against carbapenemase-producing Klebsiella pneumoniae infections. iScience. 2023;26(7):107215. doi:10.1016/j.isci.2023.107215
  • Chang D, Sharma L, Dela Cruz CS, et al. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol. 2021;12:750662. doi:10.3389/fmicb.2021.750662
  • Mohammadi M, Saffari M, Siadat SD, et al. Isolation, characterization, therapeutic potency, and genomic analysis of a novel bacteriophage vB_KshKPC-M against carbapenemase-producing Klebsiella pneumoniae strains (CRKP) isolated from Ventilator-associated pneumoniae (VAP) infection of COVID-19 patients. Ann Clin Microbiol Antimicrob. 2023;22(1):18. doi:10.1186/s12941-023-00567-1
  • Carascal MB, Dela Cruz-Papa DM, Remenyi R, et al. Phage revolution against multidrug-resistant clinical pathogens in Southeast Asia. Front Microbiol. 2022;13:820572. doi:10.3389/fmicb.2022.820572
  • Anand T, Virmani N, Kumar S, et al. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist. 2020;21:34–41. doi:10.1016/j.jgar.2019.09.018
  • Hesse S, Malachowa N, Porter AR, et al. Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258. mBio. 2021;12(1):e00034–21. doi:10.1128/mbio.00034-21
  • Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022;13(1):302. doi:10.1038/s41467-021-27656-z
  • Ichikawa M, Nakamoto N, Kredo-Russo S, et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat Commun. 2023;14(1):3261. doi:10.1038/s41467-023-39029-9
  • Kumar CK, Sands K, Walsh TR, et al. Global, regional, and national estimates of the impact of a maternal Klebsiella pneumoniae vaccine: a Bayesian modeling analysis. PLoS Med. 2023;20(5):e1004239. doi:10.1371/journal.pmed.1004239
  • Assoni L, Girardello R, Converso TR, et al. Current stage in the development of Klebsiella pneumoniae vaccines. Infect Dis Ther. 2021;10(4):2157–2175. doi:10.1007/s40121-021-00533-4
  • Cryz SJ, Cross AS, Sadoff GC, et al. Human IgG and IgA subclass response following immunization with a polyvalent Klebsiella capsular polysaccharide vaccine. Eur J Immunol. 1988;18(12):2073–2075. doi:10.1002/eji.1830181230
  • Cryz SJ, Mortimer P, Cross AS, et al. Safety and immunogenicity of a polyvalentKlebsiella capsular polysaccharide vaccine in humans. Vaccine. 1986;4(1):15–20. doi:10.1016/0264-410x(86)90092-7
  • Dintzis RZ. Rational design of conjugate vaccines. Pediatr Res. 1992;32(4):376–385. doi:10.1203/00006450-199210000-00002
  • Yang F-L, Yang Y-L, Liao P-C, et al. Structure and immunological characterization of the capsular polysaccharide of a pyrogenic liver abscess caused by Klebsiella pneumoniae: activation of macrophages through Toll-like receptor 4. J Biol Chem. 2011;286(24):21041–21051. doi:10.1074/jbc.m111.222091
  • Tu IF, Lin T-L, Yang F-L, et al. Structural and biological insights into Klebsiella pneumoniae surface polysaccharide degradation by a bacteriophage K1 lyase: implications for clinical use. J Biomed Sci. 2022;29(1):9. doi:10.1186/s12929-022-00792-4
  • Lin T-L, Yang F-L, Ren C-T, et al. Development of Klebsiella pneumoniae capsule polysaccharide-conjugated vaccine candidates using phage depolymerases. Front Immunol. 2022;13:843183. doi:10.3389/fimmu.2022.843183
  • Crosby S, Schuh MJ, Becker M, Ivanov M, Caldera F and Farraye FA. (2023). New pneumococcal vaccines for prevention of invasive pneumococcal disease in adult patients with inflammatory bowel disease. Inflamm Bowel Dis, 29(4), 661–664. 10.1093/ibd/izac150
  • Guerra MES, Destro G, Vieira B, et al. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front Cell Infect Microbiol. 2022;12:877995. doi:10.3389/fcimb.2022.877995