267
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Mechanisms of Antibiotic Resistance and Developments in Therapeutic Strategies to Combat Klebsiella pneumoniae Infection

ORCID Icon, ORCID Icon &
Pages 1107-1119 | Received 11 Dec 2023, Accepted 12 Mar 2024, Published online: 19 Mar 2024

References

  • Bengoechea JA, Pessoa JS. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;2019:2.
  • Collaborators AR, Darboe S, Carvalheiro CG, Haller S, Roca A. Articles global burden of bacterial antimicrobial resistance in 2019: a systematic analysis Antimicrobial Resistance Collaborators*. Lancet. 2022;2022:1.
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;10325:399.
  • Diallo OO, Baron SA, Abat C, et al. Antibiotic resistance surveillance systems: a review. J Glob Antimicrob Resist. 2020;23:430–438.
  • B ACA, A LDH, A DP, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2018;2018:1.
  • Hu F, Guo Y, Zhu D, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021. Chin J Infect Chemother. 2021;25(5):20.
  • Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023;18:1. doi:10.1515/med-2023-0707
  • Pei N, Sun W, He J, et al. Genome-wide association study of Klebsiella pneumoniae identifies variations linked to carbapenems resistance. Front Microbiol. 2022;13:997769. doi:10.3389/fmicb.2022.997769
  • Wang L, Yuan XD, Pang T, Duan SH. The risk factors of carbapenem-resistant Klebsiella pneumoniae infection: a Single-Center Chinese Retrospective Study. Infect Drug Resist. 2022;15:1477–1485. doi:10.2147/IDR.S352070
  • Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–275. doi:10.1093/femsre/fux013
  • Hennequin C, Robin F, Cabrolier N, Bonnet R, Forestier C. Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother. 2012;56(1):288–294. doi:10.1128/AAC.00164-11
  • Garcia-Fernandez S, Bala Y, Armstrong T, et al. Multicenter evaluation of the new etest gradient diffusion method for piperacillin-tazobactam susceptibility testing of enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex. J Clin Microbiol. 2020;58:2. doi:10.1128/JCM.01042-19
  • Abdelraouf K, Chavda KD, Satlin MJ, Jenkins SG, Kreiswirth BN, Nicolau DP. Piperacillin-tazobactam-resistant/third-generation cephalosporin-susceptible Escherichia coli and Klebsiella pneumoniae isolates: resistance mechanisms and in vitro-in vivo discordance. Int J Antimicrob Agents. 2020;55(3):105885. doi:10.1016/j.ijantimicag.2020.105885
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updates. 2010;13(6):151–171. doi:10.1016/j.drup.2010.08.003
  • Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: a review over the last 10 years. J Glob Antimicrob Resist. 2020;23:174–180. doi:10.1016/j.jgar.2020.09.004
  • Rodriguez-Martinez JM, Diaz de Alba P, Briales A, et al. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2013;68(1):68–73. doi:10.1093/jac/dks377
  • Zhong X, Xu H, Chen D, Zhou H, Hu X, Cheng G. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS One. 2014;9(12):e115185. doi:10.1371/journal.pone.0115185
  • Chen JH, Lin JC, Chang JL, Tsai YK, Siu LK. Different culture medium formulations induce variant protein expression patterns of outer membrane porins in Klebsiella pneumoniae. J Chemother. 2011;23(1):9–12. doi:10.1179/joc.2011.23.1.9
  • Al-Mogbel MS, Khan M, Shadeed M, Meqdam M, Hossain A. Influence of growth in biofilm in the formation of new biofilm by clinical isolates of Acinetobacter baumannii. J Pure Appl Microbiol. 2015;Spec.1:9.
  • Perez L. Equal, but different: fluctuant biofilm formation and its impact on polymyxin B susceptibility among a clonal spreading of KPC-2-producing Klebsiella pneumoniae isolates. Infect Control Hosp Epidemiol. 2019;40(8):954–955. doi:10.1017/ice.2019.106
  • Mohamed SH, Mohamed MSM, Khalil MS, Azmy M, Mabrouk MI. Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J Appl Microbiol. 2018;125(1):84–95. doi:10.1111/jam.13755
  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:10.1038/nrmicro.2016.94.
  • Vuotto C, Longo F, Balice M, Donelli G, Varaldo P. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens. 2014;3(3):743–758. doi:10.3390/pathogens3030743
  • Vuotto CL, F.Pascolini CD, G.Balice MPL, F.Tiracchia M, V.Salvia AV, E P. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. In Vitro Cell Dev Biol Plant. 2017;53:3.
  • Wei X. Antibiotic Resistance Profile of Klebsiella Pneumoniae and the Relationship with Biofilm Formation and Efflux Pump Genes. Southwest Medical University; 2018.
  • Bevan ER, Jones AM, Hawkey PM, et al. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–2155. doi:10.1093/jac/dkx146
  • Savov E, Todorova I, Politi L, Trifonova A, Borisova M. Colistin resistance in KPC-2- and SHV-5-producing Klebsiella pneumoniae clinical isolates in Bulgaria. Chemotherapy. 2017;62(6):339–342. doi:10.1159/000464275
  • Sidjabat HE, Silveira FP, Potoski BA, et al. Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clinl Infect Dis. 2009;49(11):1736–1738. doi:10.1086/648077
  • Schaenzer AJ, Wright GD. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol Med. 2020;26:768–782.
  • Radlinski LC, Rowe SE, Brzozowski R, Wilkinson AD, Conlon BP. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem. Biol. 2019;26:10. doi:10.1016/j.chembiol.2019.07.009
  • Butler DA, Rana AP, Krapp F, et al. Optimizing Aminoglycoside Selection for KPC-Producing Klebsiella pneumoniae with the Aminoglycoside-Modifying Enzyme (AME) Gene aac(6’)-Ib. Oxford Academic. 2021:3.
  • Shanshan SU, Xue G, Jisheng Z, et al. Antibiotic resistance mechanism and homology analysis of carbapenem-resistant Klebsiella pneumoniae outbreak in ICU. Chin J Infect Chemother. 2018. doi:10.1016/j.jiac.2018.05.003
  • Haldorsen BRC, Simonsen GS, Sundsfjord A, Samuelsen R. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6’)-Ib. Diagn Microbiol Infect Dis. 2014;78(1):66–69. doi:10.1016/j.diagmicrobio.2013.10.001
  • Chiu SK, Chan MC, Huang LY, et al. Tigecycline resistance among carbapenem-resistant Klebsiella Pneumoniae: clinical. PloS One. 2017;12:e0175140.
  • Lv F, Cai J, He Q, Wang WQ, Luo W. Overexpression of efflux pumps mediate pan resistance of Klebsiella pneumoniae sequence type 11. Microb Drug Resist. 2021;27(10):1405–1411. doi:10.1089/mdr.2020.0395
  • Q Z, L L, Y P, J C. Characterization of tigecycline-heteroresistant Klebsiella pneumoniae clinical. Front Microbiol. 2021;12:671153.
  • Wong MHY, Chan EWC, Chen S. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother. 2015;59(6):3290–3297. doi:10.1128/AAC.00310-15
  • Li J, Zhang H, Ning J, et al. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control. 2019;8(1). doi:10.1186/s13756-019-0489-3
  • Vergalli J, Bodrenko IV, Masi M, Moynié L, Pagès J-M. Porins and small-molecule translocation across the outer membrane of gram-negative bacteria. Nat Rev Microbiol. 2019;18:3.
  • Choi U, Lee CR, Zhou H. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coliData_Sheet_1.docx. Front Microbiol. 2019;10:10. doi:10.3389/fmicb.2019.00010
  • Hamzaoui Z, Ocampo-Sosa A, Maamar E, et al. An outbreak of NDM-1-producing Klebsiella pneumoniae, associated with OmpK35 and OmpK36 Porin Loss in Tunisia. Microb Drug Resist. 2018;24:1137.
  • B AKA, b AFLA, C LM, d RCYLAB, E JRIAB. Characterizing the role of porin mutations in susceptibility of beta lactamase producing Klebsiella pneumoniae isolates to ceftaroline and ceftaroline-avibactam - ScienceDirect. Inter J Infect Dis. 2020;93:252–257. doi:10.1007/s00284-016-1034-8
  • Chung HS, Yong D, Lee M. Mechanisms of ertapenem resistance in Enterobacteriaceae isolates in a tertiary university hospital. J Investig Med. 2016;64(5):1042. doi:10.1136/jim-2016-000117
  • Chang-Ro L, Jung H, Lee K, Seung P, Young B. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00895
  • Sommer LM, Johansen HK, Molin S. Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microb Genom. 2020;6(5):1.
  • Liu E, Jia P, Li X, Zhou M, Yang Q. In vitro and in vivo effect of antimicrobial agent combinations against carbapenem-resistant Klebsiella pneumoniae with different resistance mechanisms in China. Infect Drug Resist. 2021;14:917–928. doi:10.2147/IDR.S292431
  • Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80. doi:10.3389/fmicb.2019.00080
  • Omeershffudin UNM, Kumar S. Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics. Genomics Inform. 2022;20(4):e47. doi:10.5808/gi.22067
  • Janek D, Brotz-Oesterhelt H, Weidenmaier C, Peschel A, Schilling N. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;539(7628):314. doi:10.1038/nature19781
  • Kallifidas D, Kang HS, Brady SF. Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Am Chem Soc. 2012;134(48):19552. doi:10.1021/ja3093828
  • Molchanova N, Hansen PR, Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22(9):1430. doi:10.3390/molecules22091430
  • Olekson MA, You T, Savage PB, Leung KP. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration in vitro. Febs Open Bio. 2017;7(7):953–967. doi:10.1002/2211-5463.12235
  • Bai J, Zhang F, Liang S, et al. Isolation and characterization of vB_kpnM_17-11, a novel phage efficient against carbapenem-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol. 2022;12:897531. doi:10.3389/fcimb.2022.897531
  • Gan L, Fu H, Tian Z, et al. Bacteriophage effectively rescues pneumonia caused by prevalent multidrug-resistant Klebsiella pneumoniae in the early stage. Microbiol Spectr. 2022;10(5):e0235822. doi:10.1128/spectrum.02358-22
  • Ichikawa M, Nakamoto N, Kredo-Russo S, et al. Bacteriophage therapy against pathologicalKlebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat Commun. 2023;14:1. doi:10.1038/s41467-023-39029-9
  • Qian W, Zhang J, Wang W, et al. Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem-resistant Klebsiella pneumoniae. J Appl Microbiol. 2020;128(2):401–413. doi:10.1111/jam.14480
  • Pei-feng CZ. Screening of the traditional Chinese medicine with antibacterial activity against pan-drug resistant Klebsiella pneumoniae in vitro. J Bengbu Med Coll. 2020;45(4):515–519.
  • Assoni L, Girardello R, Converso TR, Darrieux M. Current stage in the development of Klebsiella pneumoniae vaccines. Infect Dis Ther. 2021;10(4):2157–2175. doi:10.1007/s40121-021-00533-4
  • Frost I, Sati H, Garcia-Vello P, et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2023;4(2):e113–e125. doi:10.1016/S2666-5247(22)00303-2
  • Wantuch PL, Rosen DA. Klebsiella pneumoniae: adaptive immune landscapes and vaccine horizons. Trends Immunol. 2023;44(10):826–844. doi:10.1016/j.it.2023.08.005
  • Kedziora A, Korzekwa K, Strek W, Pawlak A, Doroszkiewicz W, Bugla-Ploskonska G. Silver nanoforms as a therapeutic agent for killing Escherichia coli and certain ESKAPE pathogens. Curr Microbiol. 2016;73(1):139–147.
  • Kim JS, Cho DH, Park M, Chung WJ, Kweon DH. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26(2):1.
  • Gholizadeh P, Kse Ü, Dao S, Ganbarov K, Kafil HS. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist. 2020;13:1111–1121. doi:10.2147/IDR.S247271
  • Hussein MH, Schneider EK, Elliott AG, Han M, Velkov T. From breast cancer to antimicrobial: combating extremely resistant gram-negative ”superbugs” using novel combinations of polymyxin B with selective estrogen receptor modulators. Microb Drug Resist. 2016;23(5):640–650. doi:10.1089/mdr.2016.0196
  • Jun H, Tan C, Vidaillac J, Kuok H, Yam S. In vitro and in vivo efficacy of an LpxC Inhibitor, CHIR-090, alone or combined with colistin against Pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 2017;2017:1.
  • Otto RG, Van Gorp E, Kloezen W, Meletiadis J, Sanne VDB, Mouton JW. An alternative strategy for combination therapy: interactions between polymyxin B and non-antibiotics. Int J Antimicrob Agents. 2019;53:34.
  • Velkov T, Roberts KD. Discovery of novel polymyxin-like antibiotics. Adv Exp Med Biol. 1145;2019:343–362.
  • Francesc R, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep. 2017;34(7):886–908. doi:10.1039/c7np00023e
  • Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs. 2019;79:243.
  • Karaiskos I, Galani I, Papoutsaki V, et alCarbapenemase producing Klebsiella pneumoniae: implication on future therapeutic. Expert Rev Anti Infect Ther. 2022;1744-8336:53–69.
  • Witherell KS, Price J, Bandaranayake AD, Olson J, Call DR. In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli. Sci Rep. 2021;11(1):2151. doi:10.1038/s41598-021-81140-8
  • Baker KR, Jana B, Hansen AM, Nielsen HM, Franzyk H, Guardabassi L. Repurposing azithromycin and rifampicin against gram-negative pathogens by combination with peptidomimeticsData_Sheet_1.PDF. Front Cell Infect Microbiol. 2019;9. doi:10.3389/fcimb.2019.00236
  • Iszatt JJ, Larcombe AN, Chan HK, et al. Phage therapy for multi-drug resistant respiratory tract infections. Viruses. 2021;13(9):1809.
  • Yi-qiang HJ. A preliminary study on the effects of different concentrations of baicalin on the growth and biofilm formation of hypervirulent Klebsiella pneumoniae. J Clin Pulm Med. 2022;27(3):342–345.
  • Tang JR, Zhang D, Li S. Antibacterial activity of four traditional Chinese medicine momonomers combined with imipenem against carbapenem-resistant Klebsiella Pneumoniae in vitro. J Mod Lab Med. 2022;37(6):162–166.
  • Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces. 2013;5(19):9322–9329. doi:10.1021/am402618w
  • Sharma RP, Raut SD, Jadhav VV, Mulani RM, Kadam AS, Mane RS. Assessment of antibacterial and anti-biofilm effects of zinc ferrite nanoparticles against Klebsiella pneumoniae. Folia Microbiol. 2022;67(5):747–755.
  • Abushahba MFN, Mohammad H, Thangamani S, Hussein AAA, Seleem MN. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Rep. 2016;6(1):20832.
  • Mohan M, Bhattacharya D. Host-directed therapy: a new arsenal to come. Comb Chem High Throughput Screen. 2021;24(1):59–70. doi:10.2174/1386207323999200728115857
  • Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Exp Rev Anti-Infective Ther. 2020;1:1–13.
  • Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect. 2020;26(5):5. doi:10.1016/j.cmi.2019.09.015
  • Aggarwal C, Jimenez JC, Lee H, Chlipala GE, Ratia K, Federle MJ. Identification of quorum-sensing inhibitors disrupting signaling between rgg and short hydrophobic peptides in Streptococci. Mbio. 2015;6(3). doi:10.1128/mBio.00393-15
  • Ursula T, Laura J, Piddock V. Non-traditional ANTIBACTERIAL THERAPEUTIC OPTIONS AND CHALLENGes - ScienceDirect. Cell Host Microbe. 2019;26(1):61–72. doi:10.1016/j.chom.2019.06.004