189
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques

ORCID Icon, , , ORCID Icon, , , ORCID Icon & show all
Pages 1491-1506 | Received 14 Jan 2024, Accepted 26 Mar 2024, Published online: 11 Apr 2024

References

  • Wang DM, Liu H, Zheng YL, Xu YH, Liao Y. Epidemiology of nontuberculous mycobacteria in tuberculosis suspects, Southwest of China, 2017–2022. Front Cell Infect Microbiol. 2023;13:1282902. doi:10.3389/fcimb.2023.1282902
  • Yu JJ, Tang SJ. 耐多药/利福平耐药结核病化学治疗年度进展2022 [Annual progress of chemotherapy of multidrug/rifampicin-resistant tuberculosis in 2022]. Zhonghua Jie He He Hu Xi Za Zhi. 2023;46(1):62–66. Chinese. doi:10.3760/cma.j.cn112147-20221030-00853
  • Nusrath Unissa A, Hassan S, Indira Kumari V, Revathy R, Hanna LE. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis. J Mol Graph Model. 2016;67:20–32. doi:10.1016/j.jmgm.2016.04.005
  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. 2015;10(3):e0119628. doi:10.1371/journal.pone.0119628
  • Bifani P, Mathema B, Campo M, et al. Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strain. Emerg Infect Dis. 2001;7(5):842–848. doi:10.3201/eid0705.010512
  • Spies FS, Ribeiro AW, Ramos DF, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol. 2011;49(7):2625–2630. doi:10.1128/jcm.00168-11
  • Ramaswamy SV, Amin AG, Göksel S, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000;44(2):326–336. doi:10.1128/aac.44.2.326-336.2000
  • Brossier F, Sougakoff W, Bernard C, et al. Molecular analysis of the embCAB Locus and embR Gene involved in ethambutol resistance in clinical isolates of mycobacterium tuberculosis in France. Antimicrob Agents Chemother. 2015;59(8):4800–4808. doi:10.1128/aac.00150-15
  • Xu Y, Jia H, Huang H, Sun Z, Zhang Z. Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and -resistant mycobacterium tuberculosis clinical isolates from China. Biomed Res Int. 2015;2015:951706. doi:10.1155/2015/951706
  • Desjardins CA, Cohen KA, Munsamy V, et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet. 2016;48(5):544–551. doi:10.1038/ng.3548
  • Belanger AE, Porter JC, Hatfull GF. Genetic analysis of peptidoglycan biosynthesis in mycobacteria: characterization of a ddlA mutant of Mycobacterium smegmatis. J Bacteriol. 2000;182(23):6854–6856. doi:10.1128/jb.182.23.6854-6856.2000
  • Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(8):3192–3197. doi:10.1128/aac.49.8.3192-3197.2005
  • Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(2):571–577. doi:10.1128/aac.49.2.571-577.2005
  • Jugheli L, Bzekalava N, de Rijk P, Fissette K, Portaels F, Rigouts L. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob Agents Chemother. 2009;53(12):5064–5068. doi:10.1128/aac.00851-09
  • Malinga L, Brand J, Olorunju S, Stoltz A, van der Walt M. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2016;85(4):433–437. doi:10.1016/j.diagmicrobio.2016.05.010
  • Hillemann D, Rüsch-Gerdes S, Richter E. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother. 2008;52(2):800–801. doi:10.1128/aac.01189-07
  • Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72(7):1901–1906. doi:10.1093/jac/dkx094
  • Zong Z, Jing W, Shi J, et al. Comparison of in vitro activity and MIC distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant mycobacterium tuberculosis in China. Antimicrob Agents Chemother. 2018;62:8. doi:10.1128/aac.00165-18
  • Werngren J, Alm E, Mansjö M. Non-pncA gene-mutated but pyrazinamide-resistant mycobacterium tuberculosis: why is that? J Clin Microbiol. 2017;55(6):1920–1927. doi:10.1128/jcm.02532-16
  • Saeed DK, Shakoor S, Razzak SA, et al. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan. BMC Microbiol. 2022;22(1):62. doi:10.1186/s12866-022-02475-4
  • Nguyen TVA, Anthony RM, Bañuls AL, Nguyen TVA, Vu DH, Alffenaar JC. Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis. 2018;66(10):1625–1630. doi:10.1093/cid/cix992
  • Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(8):4590–4599. doi:10.1128/aac.00753-16
  • Karmakar M, Rodrigues CHM, Holt KE, Dunstan SJ, Denholm J, Ascher DB. Empirical ways to identify novel bedaquiline resistance mutations in AtpE. PLoS One. 2019;14(5):e0217169. doi:10.1371/journal.pone.0217169
  • Xu J, Wang B, Hu M, et al. Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2017;61:6. doi:10.1128/aac.00239-17
  • Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci. 2021;274:119301. doi:10.1016/j.lfs.2021.119301
  • Manjunatha UH, Boshoff H, Dowd CS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(2):431–436. doi:10.1073/pnas.0508392103
  • Forouhar F, Abashidze M, Xu H, et al. Molecular insights into the biosynthesis of the F420 coenzyme. J Biol Chem. 2008;283(17):11832–11840. doi:10.1074/jbc.M710352200
  • Bashiri G, Rehan AM, Sreebhavan S, Baker HM, Baker EN, Squire CJ. Elongation of the Poly-γ-glutamate Tail of F420 Requires Both Domains of the F420:γ-Glutamyl Ligase (FbiB) of Mycobacterium tuberculosis. J Biol Chem. 2016;291(13):6882–6894. doi:10.1074/jbc.M115.689026
  • Xavier AS, Lakshmanan M. Delamanid: a new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5(3):222–224. doi:10.4103/0976-500x.136121
  • Nguyen QT, Trinco G, Binda C, Mattevi A, Fraaije MW. Discovery and characterization of an F(420)-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl Microbiol Biotechnol. 2017;101(7):2831–2842. doi:10.1007/s00253-016-8038-y
  • Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83(1–3):91–97. doi:10.1016/s1472-9792(02)00089-6
  • Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Growth inhibition of Mycobacterium smegmatis by mycobacteriophage-derived enzymes. Enzyme Microb Technol. 2014;63:1–6. doi:10.1016/j.enzmictec.2014.04.018
  • Liang J, Liu F, Xu P, et al. Molecular recognition of trehalose and trehalose analogues by Mycobacterium tuberculosis LpqY-SugABC. Proc Natl Acad Sci U S A. 2023;120(35):e2307625120. doi:10.1073/pnas.2307625120
  • Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2010;107(50):21761–21766. doi:10.1073/pnas.1014642108
  • Lee JJ, Lee SK, Song N, et al. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat Commun. 2019;10(1):2928. doi:10.1038/s41467-019-10975-7
  • Song L, Wu X. Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents. 2016;47(6):421–429. doi:10.1016/j.ijantimicag.2016.04.007
  • de Souza JVP, Murase LS, Caleffi-Ferracioli KR, et al. Isoniazid and verapamil modulatory activity and efflux pump gene expression in Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2020;24(6):591–596. doi:10.5588/ijtld.19.0458
  • Long Y, Wang B, Xie T, et al. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2023:e0251023. doi:10.1128/spectrum.02510-23
  • Ghajavand H, Kargarpour Kamakoli M, Khanipour S, et al. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps. Antimicrob Resist Infect Control. 2019;8:70. doi:10.1186/s13756-019-0516-4
  • Gygli SM, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354–373.
  • Slayden RA, Lee RE, Barry CE. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol. 2000;38(3):514–525. doi:10.1046/j.1365-2958.2000.02145.x
  • Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): a key target for antitubercular drug discovery. Bioorg Chem. 2021;115:105242. doi:10.1016/j.bioorg.2021.105242
  • Bruning JB, Murillo AC, Chacon O, Barletta RG, Sacchettini JC. Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob Agents Chemother. 2011;55(1):291–301. doi:10.1128/aac.00558-10
  • Zhang Z, Liu M, Wang Y, Pang Y, Kam KM, Zhao Y. Molecular and phenotypic characterization of multidrug-resistant Mycobacterium tuberculosis isolates resistant to kanamycin, amikacin, and capreomycin in China. Eur J Clin Microbiol Infect Dis. 2014;33(11):1959–1966. doi:10.1007/s10096-014-2144-5
  • Kohler N, Karakose H, Grobbel HP, et al. A single-run HPLC-MS multiplex assay for therapeutic drug monitoring of relevant first- and second-line antibiotics in the treatment of drug-resistant tuberculosis. Pharmaceutics. 2023;15(11). doi:10.3390/pharmaceutics15112543
  • Schami A, Islam MN, Belisle JT, Torrelles JB. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Frontiers in Cellular and Infection Microbiology. 2023;13. doi:10.3389/fcimb.2023.1274175
  • Verma JS, Rawat D, Hasan A, et al. The use of E-test for the drug susceptibility testing of Mycobacterium tuberculosis - a solution or an illusion? Indian J Med Microbiol. 2010;28(1):30–33. doi:10.4103/0255-0857.58725
  • Slail MJ, Booq RY, Al-Ahmad IH, et al. Evaluation of xpert MTB/RIF ultra for the diagnosis of extrapulmonary tuberculosis: a retrospective analysis in Saudi Arabia. J Epidemiol Glob Health. 2023;13(4):782–793. doi:10.1007/s44197-023-00150-z
  • Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis. 2015;2(Suppl 2):S21–8. doi:10.1093/infdis/jiu803
  • Denkinger CM, Kik SV, Cirillo DM, et al. Defining the needs for next generation assays for tuberculosis. J Infect Dis. 2015;2(Suppl 2):S29–38. doi:10.1093/infdis/jiu821
  • Kwak M, Lee WK, Lim YJ, Lee SH, Ryoo S. Systematic review and meta-analysis of the nitrate reductase assay for drug susceptibility testing of Mycobacterium tuberculosis and the detection limits in liquid medium. J Microbiol Methods. 2017;141:1–9. doi:10.1016/j.mimet.2017.07.001
  • Coban AY, Deveci A, Sunter AT, Martin A. Nitrate reductase assay for rapid detection of isoniazid, rifampin, ethambutol, and streptomycin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Clin Microbiol. 2014;52(1):15–19. doi:10.1128/JCM.01990-13
  • Kammoun S, Smaoui S, Marouane C, Slim L, Messadi-Akrout F. Drug susceptibility testing of Mycobacterium tuberculosis by a nitrate reductase assay applied directly on microscopy-positive sputum samples. Int J Mycobacteriol. 2015;4(3):202–206. doi:10.1016/j.ijmyco.2015.04.005
  • Musa HR, Ambroggi M, Souto A, Angeby KA. Drug susceptibility testing of Mycobacterium tuberculosis by a nitrate reductase assay applied directly on microscopy-positive sputum samples. J Clin Microbiol. 2005;43(7):3159–3161. doi:10.1128/jcm.43.7.3159-3161.2005
  • Kohli A, Bashir G, Fatima A, Jan A, Wani NU, Ahmad J. Rapid drug-susceptibility testing of Mycobacterium tuberculosis clinical isolates to first-line antitubercular drugs by nitrate reductase assay: a comparison with proportion method. Int J Mycobacteriol. 2016;5(4):469–474. doi:10.1016/j.ijmyco.2016.06.006
  • Li S, Tan Y, Deng Y, et al. The emerging threat of fluroquinolone-, bedaquiline-, and linezolid-resistant Mycobacterium tuberculosis in China: observations on surveillance data. J Infect Public Health. 2024;17(1):137–142. doi:10.1016/j.jiph.2023.11.018
  • L-l Z, Xia Q, Lin N, et al. Evaluation of BACTEC MGIT 960 system for the second-line drugs susceptibility testing of Mycobacterium tuberculosis in China. Journal of Microbiological Methods. 2012;91(1):212–214. doi:10.1016/j.mimet.2012.06.010
  • Rafael LL, Raquel MS, Rogelio FA, Miroslava FP, Alejandra-Isabel JG, Paola RS. Discordant results between genotypic and phenotypic assays (Xpert MTB/RIF vs. BACTEC MGIT 960 system) for detection of RIF-resistant Mycobacterium tuberculosis isolates in a high burden region. Infect Genet Evol. 2021;96:105142. doi:10.1016/j.meegid.2021.105142
  • Peng J, Yu X, Cui Z, et al. Multi-fluorescence real-time PCR assay for detection of RIF and INH resistance of M. tuberculosis. Front Microbiol. 2016;7:618. doi:10.3389/fmicb.2016.00618
  • Allix-Beguec C; Consortium CR, the GP. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med. 2018;379(15):1403–1415. doi:10.1056/NEJMoa1800474
  • Mu J, Liu Z, Zhang C, et al. Performance of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis using formalin-fixed, paraffin-embedded tissues. Am J Clin Pathol. 2021;156(1):34–41. doi:10.1093/ajcp/aqaa203
  • Gupta RK, Anthwal D, Bhalla M, Tyagi JS, Choudhary S, Haldar S. Direct detection of fluoroquinolone resistance in sputum samples from tuberculosis patients by high resolution melt curve analysis. Curr Microbiol. 2023;81(1):27. doi:10.1007/s00284-023-03519-2
  • Lawn SD, Nicol MP. Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol. 2011;6(9):1067–1082. doi:10.2217/fmb.11.84
  • Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;2014(1):Cd009593. doi:10.1002/14651858.CD009593.pub3
  • Kolia-Diafouka P, Carrère-Kremer S, Lounnas M, et al. Detection of Mycobacterium tuberculosis in paucibacillary sputum: performances of the Xpert MTB/RIF ultra compared to the Xpert MTB/RIF, and IS6110 PCR. Diagn Microbiol Infect Dis. 2019;94(4):365–370. doi:10.1016/j.diagmicrobio.2019.02.008
  • Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989;86(16):6230–6234. doi:10.1073/pnas.86.16.6230
  • Lin M, Chen Y-W, Li Y-R, et al. Systematic evaluation of line probe assays for the diagnosis of tuberculosis and drug-resistant tuberculosis. Clinica Chimica Acta. 2022;533:183–218. doi:10.1016/j.cca.2022.06.020
  • Aricha SA, Kingwara L, Mwirigi NW, et al. Comparison of GeneXpert and line probe assay for detection of Mycobacterium tuberculosis and rifampicin-mono resistance at the National Tuberculosis Reference Laboratory, Kenya. BMC Infect Dis. 2019;19(1):852. doi:10.1186/s12879-019-4470-9
  • Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2017;49(1). doi:10.1183/13993003.01075-2016
  • Guo Q, Yu Y, Zhu YL, et al. Rapid detection of rifampin-resistant clinical isolates of Mycobacterium tuberculosis by reverse dot blot hybridization. Biomed Environ Sci. 2015;28(1):25–35. doi:10.3967/bes2015.003
  • Hofmann-Thiel S, van Ingen J, Feldmann K, et al. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. Eur Respir J. 2009;33(2):368–374. doi:10.1183/09031936.00089808
  • Hu S, Li G, Li H, et al. Rapid detection of isoniazid resistance in Mycobacterium tuberculosis isolates by use of real-time-PCR-based melting curve analysis. J Clin Microbiol. 2014;52(5):1644–1652. doi:10.1128/jcm.03395-13
  • Zheng Y, Xia H, Bao X, Zhao B, He P, Zhao Y. Highly sensitive detection of isoniazid heteroresistance in mycobacterium tuberculosis by droplet digital PCR. Infect Drug Resist. 2022;15:6245–6254. doi:10.2147/idr.S381097
  • Pholwat S, Stroup S, Foongladda S, Houpt E. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One. 2013;8(2):e57238. doi:10.1371/journal.pone.0057238
  • Zhang S, Chen X, Lin Z, et al. Quantification of isoniazid-heteroresistant mycobacterium tuberculosis using droplet digital PCR. J Clin Microbiol. 2023;61(6):e0188422. doi:10.1128/jcm.01884-22
  • Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–338. doi:10.1146/annurev-pathmechdis-012418-012751
  • Cason C, D’Accolti M, Soffritti I, Mazzacane S, Comar M, Caselli E. Next-generation sequencing and PCR technologies in monitoring the hospital microbiome and its drug resistance. Front Microbiol. 2022;13:969863. doi:10.3389/fmicb.2022.969863
  • Zhang G, Zhang H, Hu X, et al. Clinical application value of metagenomic next-generation sequencing in the diagnosis of spinal infections and its impact on clinical outcomes. Front Cell Infect Microbiol. 2023;13:1076525. doi:10.3389/fcimb.2023.1076525
  • Xiang ZB, Leng EL, Cao WF, et al. A systematic review and meta-analysis of the diagnostic accuracy of metagenomic next-generation sequencing for diagnosing tuberculous meningitis. Front Immunol. 2023;14:1223675. doi:10.3389/fimmu.2023.1223675
  • Cabibbe AM, Spitaleri A, Battaglia S, et al. Application of targeted next-generation sequencing assay on a portable sequencing platform for culture-free detection of drug-resistant tuberculosis from clinical samples. J Clin Microbiol. 2020;58(10). doi:10.1128/JCM.00632-20
  • Zhang G, Zhang H, Zhang Y, Hu X, Tang M, Gao Q. Targeted next-generation sequencing technology showed great potential in identifying spinal tuberculosis and predicting the drug resistance. J Infect. 2023;87(6):e110–e112. doi:10.1016/j.jinf.2023.10.018
  • Lin Q, Yao Y, Li X, et al. The application of nanopore targeted sequencing for pathogen diagnosis in bronchoalveolar lavage fluid of patients with pneumonia: a prospective multicenter study. Infect Dis. 2024;56(2):128–137. doi:10.1080/23744235.2023.2276785
  • Sun X, Song J, Leng X, et al. A preliminary evaluation of targeted nanopore sequencing technology for the detection of Mycobacterium tuberculosis in bronchoalveolar lavage fluid specimens. Front Cell Infect Microbiol. 2023;13:1107990. doi:10.3389/fcimb.2023.1107990
  • Dippenaar A, Goossens SN, Grobbelaar M, et al. Nanopore sequencing for mycobacterium tuberculosis: a critical review of the literature, new developments, and future opportunities. J Clin Microbiol. 2022;60(1):e0064621. doi:10.1128/JCM.00646-21
  • Wu W, Cheng P, Lyu J, Zhang Z, Xu J. Tag Array gene chip rapid diagnosis anti-tuberculosis drug resistance in pulmonary tuberculosis -a feasibility study. Tuberculosis. 2018;110:96–103. doi:10.1016/j.tube.2018.03.010
  • Torres JN, Paul LV, Rodwell TC, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg Microbes Infect. 2015;4(7):e42. doi:10.1038/emi.2015.42
  • Feng G, Han W, Shi J, Xia R, Xu J. Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: a retrospective study. Sci Rep. 2021;11(1):17951. doi:10.1038/s41598-021-97559-y
  • Parveen S, Shen J, Lun S, et al. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nat Commun. 2023;14(1):7427. doi:10.1038/s41467-023-43304-0
  • Chaiyachat P, Kaewseekhao B, Chaiprasert A, et al. Metabolomic analysis of Mycobacterium tuberculosis reveals metabolic profiles for identification of drug-resistant tuberculosis. Sci Rep. 2023;13(1):8655. doi:10.1038/s41598-023-35882-2
  • Janssen EM, Dy SM, Meara AS, Kneuertz PJ, Presley CJ, Bridges JFP. Analysis of patient preferences in lung cancer - estimating acceptable tradeoffs between treatment benefit and side effects. Patient Prefer Adherence. 2020;14:927–937. doi:10.2147/ppa.S235430
  • Wang L, Ying R, Liu Y, Sun Q, Sha W. Metabolic profiles of clinical isolates of drug-susceptible and multidrug-resistant mycobacterium tuberculosis: a metabolomics-based study. Infect Drug Resist. 2023;16:2667–2680. doi:10.2147/IDR.S405987
  • Xu G, Liu H, Jia X, Wang X, Xu P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: the phenomenon of drug resistance is complex. Tuberculosis. 2021;128:102083. doi:10.1016/j.tube.2021.102083
  • Weerakoon KG, McManus DP. Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol. 2016;32(5):378–391. doi:10.1016/j.pt.2016.01.006
  • Traver S, Assou S, Scalici E, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update. 2014;20(6):905–923. doi:10.1093/humupd/dmu031
  • Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc. 2018;93(3):1649–1683. doi:10.1111/brv.12413
  • Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–1916. doi:10.1128/iai.73.4.1907-1916.2005
  • Pan SW, Su WJ, Chan YJ, Chuang FY, Feng JY, Chen YM. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One. 2021;16(6):e0253879. doi:10.1371/journal.pone.0253879
  • Labugger I, Heyckendorf J, Dees S, et al. Detection of transrenal DNA for the diagnosis of pulmonary tuberculosis and treatment monitoring. Infection. 2017;45(3):269–276. doi:10.1007/s15010-016-0955-2
  • Casadevall A, Fang FC. The intracellular pathogen concept. Mol Microbiol. 2020;113(3):541–545. doi:10.1111/mmi.14421
  • Wu X, Liang R, Xiao Y, et al. Application of targeted next generation sequencing technology in the diagnosis of Mycobacterium Tuberculosis and first line drugs resistance directly from cell-free DNA of bronchoalveolar lavage fluid. J Infect. 2023;86(4):399–401. doi:10.1016/j.jinf.2023.01.031
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712. doi:10.1126/science.1138140
  • Liu P, Wang X, Liang J, et al. A recombinase polymerase amplification-coupled Cas12a mutant-based module for efficient detection of streptomycin-resistant mutations in mycobacterium tuberculosis. Front Microbiol. 2021;12:796916. doi:10.3389/fmicb.2021.796916
  • Bai X, Gao P, Qian K, et al. A highly sensitive and specific detection method for mycobacterium tuberculosis fluoroquinolone resistance mutations utilizing the CRISPR-Cas13a system. Front Microbiol. 2022;13:847373. doi:10.3389/fmicb.2022.847373
  • Li S, Poulton NC, Chang JS, et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol. 2022;7(6):766–779. doi:10.1038/s41564-022-01130-y
  • Yan MY, Zheng D, Li SS, et al. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. Sci Adv. 2022;8(47):eadd5907. doi:10.1126/sciadv.add5907
  • Samukawa N, Yamaguchi T, Ozeki Y, et al. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. Microbiology. 2022;168:12. doi:10.1099/mic.0.001285
  • Tram TTB, Ha VTN, Trieu LPT, et al. FLASH-TB: an application of next-generation CRISPR to detect drug resistant tuberculosis from direct sputum. J Clin Microbiol. 2023;61(4):e0163422. doi:10.1128/jcm.01634-22
  • Shi J, He G, Ning H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis. 2022;135:102209. doi:10.1016/j.tube.2022.102209
  • Lavigne JP, Espinal P, Dunyach-Remy C, Messad N, Pantel A, Sotto A. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med. 2013;51(2):257–270. doi:10.1515/cclm-2012-0291
  • Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol. 2010;8(1):74–82. doi:10.1038/nrmicro2243
  • Strola SA, Baritaux JC, Schultz E, et al. Single bacteria identification by Raman spectroscopy. J Biomed Opt. 2014;19(11):111610. doi:10.1117/1.JBO.19.11.111610
  • Tang JW, Liu QH, Yin XC, et al. Comparative analysis of machine learning algorithms on surface enhanced raman spectra of clinical staphylococcus species. Front Microbiol. 2021;12:696921. doi:10.3389/fmicb.2021.696921
  • Perumal J, Dinish US, Bendt AK, et al. Identification of mycolic acid forms using surface-enhanced Raman scattering as a fast detection method for tuberculosis. Int J Nanomedicine. 2018;13:6029–6038. doi:10.2147/ijn.S171400
  • Wang L, Zhang XD, Tang JW, et al. Machine learning analysis of SERS fingerprinting for the rapid determination of Mycobacterium tuberculosis infection and drug resistance. Comput Struct Biotechnol J. 2022;20:5364–5377. doi:10.1016/j.csbj.2022.09.031
  • Lyu JW, Zhang XD, Tang JW, et al. Rapid prediction of multidrug-resistant Klebsiella pneumoniae through deep learning analysis of SERS spectra. Microbiol Spectr. 2023;11(2):e0412622. doi:10.1128/spectrum.04126-22
  • Mathew A, Amudha P, Sivakumari S. Deep learning techniques: an overview. In: Hassanien AE, Bhatnagar R, Darwish A, editors. Advanced Machine Learning Technologies and Applications. Singapore: Springer Singapore; 2021:599–608.
  • Pavšič J, Žel J, Milavec M. Digital PCR for direct quantification of viruses without DNA extraction. Anal Bioanal Chem. 2016;408(1):67–75. doi:10.1007/s00216-015-9109-0
  • Trypsteen W, Vynck M, De Neve J, et al. ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Anal Bioanal Chem. 2015;407(19):5827–5834. doi:10.1007/s00216-015-8773-4
  • Bosman KJ, Nijhuis M, van Ham PM, et al. Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir. Sci Rep. 2015;5:13811. doi:10.1038/srep13811