34
Views
0
CrossRef citations to date
0
Altmetric
CASE REPORT

Genomic Insights into the First Emergence of blaNDM-5-Carrying Carbapenem-Resistant Salmonella enterica Serovar London Strain in China

, , , , , , , , & show all
Pages 1781-1790 | Received 20 Feb 2024, Accepted 25 Apr 2024, Published online: 07 May 2024

References

  • Duff N, Steele AD, Garrett D. Global action for local impact: the 11th international conference on typhoid and other invasive salmonelloses. Clin Infect Dis. 2020;71(Suppl 2):S59–S63. doi:10.1093/cid/ciaa236
  • Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int J Environ Res Public Health. 2018;15(5):863. doi:10.3390/ijerph15050863
  • Castro-Vargas RE, Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Antibiotic resistance in Salmonella spp. isolated from poultry: a global overview. Vet World. 2020;13(10):2070. doi:10.14202/vetworld.2020.2070-2084
  • Foley SL, Lynne AM. Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. J Anim Sci. 2008;86(suppl_14):E173–E187. doi:10.2527/jas.2007-0447
  • Stanaway JD, Parisi A, Sarkar K, et al. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the global burden of disease study 2017. Lancet Infect Dis. 2019;19(12):1312–1324. doi:10.1016/S1473-3099(19)30418-9
  • Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev. 2015;28(4):901–937. doi:10.1128/CMR.00002-15
  • McKenna M. Antibiotic resistance: the last resort. Nature. 2013;499(7459):394–396. doi:10.1038/499394a
  • Suay-García B, Pérez-Gracia MT. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) infections. Antibiotics. 2019,August 19;8: 3 122 doi:10.3390/antibiotics8030122
  • Fernández J, Guerra B, Rodicio M. Resistance to carbapenems in Non-Typhoidal Salmonella enterica serovars from humans, animals and food. Veterinary Sciences. 2018;5(2):40. doi:10.3390/vetsci5020040
  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–272. doi:10.1016/j.molmed.2012.03.003
  • Sogawa K, Watanabe M, Sato K, et al. Use of the MALDI BioTyper system with MALDI–TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem. 2011;400:1905–1911. doi:10.1007/s00216-011-4877-7
  • Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12):10–1128. doi:10.1128/JCM.00213-21
  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i890. doi:10.1093/bioinformatics/bty560
  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology. 2017;13(6):e1005595. doi:10.1371/journal.pcbi.1005595
  • Zhang S, Den Bakker HC, Li S, et al. SeqSero2: rapid and Improved Salmonella serotype determination using whole-genome sequencing data. Appl Environ Microbiol. 2019;85(23):e01746–19. doi:10.1128/AEM.01746-19
  • Robertson J, Nash JH. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microbial Genomics. 2018;4(8). doi:10.1099/mgen.0.000206
  • Aziz RK, Bartels D, Best AA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75. doi:10.1186/1471-2164-9-75
  • Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM. ResFinder–an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics. 2022;8(1). doi:10.1099/mgen.0.000748
  • Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):1 doi:10.1093/nar/gkab1107
  • Puterová J, Martínek T. digIS: towards detecting distant and putative novel insertion sequence elements in prokaryotic genomes. BMC Bioinf. 2021;22(1):258. doi:10.1186/s12859-021-04177-6
  • Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(suppl_1):D32–D36. doi:10.1093/nar/gkj014
  • Néron B, Littner E, Haudiquet M, Perrin A, Cury J, Rocha EP. IntegronFinder 2.0: identification and analysis of integrons across bacteria, with a focus on antibiotic resistance in Klebsiella. Microorganisms. 2022;10(4):700. doi:10.3390/microorganisms10040700
  • Roer L, Hendriksen RS, Leekitcharoenphon P, et al. Is the evolution of Salmonella enterica subsp. enterica linked to restriction-modification systems? Msystems. 2016;1(3):10–1128. doi:10.1128/mSystems.00009-16
  • Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524. doi:10.1186/s13059-014-0524-x
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15–e15. doi:10.1093/nar/gku1196
  • Page AJ, Taylor B, Delaney AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics. 2016;2(4). doi:10.1099/mgen.0.000056
  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecul Biol Evolu. 2015;32(1):268–274. doi:10.1093/molbev/msu300
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–W296. doi:10.1093/nar/gkab301
  • Alikhan NF, Petty NK, Zakour NLB, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. doi:10.1186/1471-2164-12-402
  • Chang MX, Zhang JF, Sun YH, et al. Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp. Front Microbiol. 2021:12. doi:10.3389/fmicb.2021.663731
  • Toleman MA, Bennett PM, Walsh TR. IS CR elements: novel gene-capturing systems of the 21st Century? Microbiol Mol Biol Rev. 2006;70(2):296–316. doi:10.1128/MMBR.00048-05
  • Zhou Z, Alikhan NF, Mohamed K, et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30(1):138–152. doi:10.1101/gr.251678.119
  • García-Soto S, Tomaso H, Linde J, Methner U. Epidemiological analysis of Salmonella enterica subsp. enterica serovar Dublin in German cattle herds using whole-genome sequencing. Microbiology Spectrum. 2021;9(2):e00332–21. doi:10.1128/Spectrum.00332-21
  • Caliskan-Aydogan O, Alocilja EC. A review of carbapenem resistance in Enterobacterales and its detection techniques. Microorganisms. 2023;11(6):1491. doi:10.3390/microorganisms11061491
  • Wu Y, Jiang T, Bao D, et al. Global population structure and genomic surveillance framework of carbapenem-resistant Salmonella enterica. Drug Resist Updates. 2023;68:100953. doi:10.1016/j.drup.2023.100953
  • Wang Y, Liu Y, Lyu N, et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl Sci Rev. 2023;10(3):nwac269. doi:10.1093/nsr/nwac269
  • Li Y, Li K, Peng K, Wang Z, Song H, Li R. Distribution, antimicrobial resistance and genomic characterization of Salmonella along the pork production chain in Jiangsu, China. LWT. 2022;163:113516. doi:10.1016/j.lwt.2022.113516
  • Zhao Q, Berglund B, Zou H, et al. Dissemination of blaNDM-5 via IncX3 plasmids in carbapenem-resistant Enterobacteriaceae among humans and in the environment in an intensive vegetable cultivation area in eastern China. Environ Pollut. 2021;273:116370. doi:10.1016/j.envpol.2020.116370
  • Tian D, Wang B, Zhang H, et al. Dissemination of the bla NDM-5 Gene via IncX3-Type Plasmid among Enterobacteriaceae in Children. mSphere. 2020;5(1):e00699–19. doi:10.1128/mSphere.00699-19
  • Zeng S, Huang Y, Zhang X, Fu L, Sun Z, Li X. Molecular characterization of IncFII plasmid carrying bla NDM-5 in a Salmonella enterica serovar Typhimurium ST34 clinical isolate in China. mSphere. 2023;8(6):e00480–23. doi:10.1128/msphere.00480-23
  • Johnson TJ, Thorsness JL, Anderson CP, et al. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One. 2010;5(12):e15524. doi:10.1371/journal.pone.0015524
  • Li IC, Wu HH, Chen ZW, Chou CH. Prevalence of IncFIB plasmids found among Salmonella enterica serovar schwarzengrund isolates from animal sources in Taiwan using whole-genome sequencing. Pathogens. 2021;10(8):1024. doi:10.3390/pathogens10081024
  • Khajanchi BK, Hasan NA, Choi SY, et al. Comparative genomic analysis and characterization of incompatibility group FIB plasmid encoded virulence factors of Salmonella enterica isolated from food sources. BMC Genomics. 2017;18(1):1–14. doi:10.1186/s12864-017-3954-5
  • Liu Z, Xiao X, Li Y, Liu Y, Li R, Wang Z. Emergence of IncX3 plasmid-harboring blaNDM–5 dominated by Escherichia coli ST48 in a goose farm in Jiangsu, China. Front Microbiol. 2019;10:2002. doi:10.3389/fmicb.2019.02002
  • Li Y, Yang Y, Wang Y, Walsh TR, Wang S, Cai C. Molecular characterization of blaNDM-harboring plasmids reveal its rapid adaptation and evolution in the Enterobacteriaceae. One Health Adv. 2023;1(1):30. doi:10.1186/s44280-023-00033-9
  • Corno G, Ghaly T, Sabatino R, et al. Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. Environ Pollut. 2023;316:120601. doi:10.1016/j.envpol.2022.120601
  • Tavares RDS, Tacão M, Ramalheira E, Ferreira S, Henriques I. Report and Comparative Genomics of an NDM-5-Producing Escherichia coli in a Portuguese hospital: complex class 1 integrons as important players in blaNDM Spread. Microorganisms. 2022;10(11):2243. doi:10.3390/microorganisms10112243
  • Chowdhury G, Ramamurthy T, Das B, et al. Characterization of NDM-5 carbapenemase-encoding gene (blaNDM-5) – positive multidrug resistant commensal Escherichia coli from diarrheal patients. IDR. 2022;15:3631–3642. doi:10.2147/IDR.S364526
  • Fang L, Lin G, Li Y, et al. Genomic characterization of Salmonella enterica serovar Kentucky and London recovered from food and human salmonellosis in Zhejiang Province, China (2016–2021). Front Microbiol. 2022;13:961739. doi:10.3389/fmicb.2022.961739
  • He Y, Wang J, Zhang R, et al. Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Front Public Health. 2023;11:1127925. doi:10.3389/fpubh.2023.1127925
  • Authority EFS. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023;21(12):1 doi:10.2903/j.efsa.2023.8442