284
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways

, , , &
Pages 97-112 | Received 16 Oct 2023, Accepted 23 Jan 2024, Published online: 18 Feb 2024

References

  • Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–958. doi:10.1016/j.jaci.2017.03.050
  • van den Oord RA, Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ. 2009;339:b2433. doi:10.1136/bmj.b2433
  • Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. JAllergy Clin Immunol. 2002;110(3):349–356. doi:10.1067/mai.2002.126780
  • Henricks PA, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther. 2001;14(6):409–420. doi:10.1006/pupt.2001.0319
  • Ercan H, Birben E, Dizdar EA, et al. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol. 2006;118(5):1097–1104. doi:10.1016/j.jaci.2006.08.012
  • Marple BF. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace. Am J Rhinol Allergy. 2010;24(4):249–254. doi:10.2500/ajra
  • Han M, Lee D, Lee SH, et al. Oxidative stress and antioxidant pathway in allergic rhinitis. Antioxidants. 2021;10(8):1266. doi:10.3390/antiox10081266
  • Eifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016;46(9):1139–1151. doi:10.1111/cea.12780
  • Piao CH, Fan YJ, Nguyen TV, et al. Mangiferin alleviates ovalbumin-induced allergic rhinitis via Nrf2/HO-1/NF-KB signaling pathways. Int J Mol Sci. 2020;21:3415. doi:10.3390/ijms21103415
  • Gao X, Li N, Zhang J. a p38MAPK inhibitor, attenuates olfactory dysfunction by inhibiting OSN apoptosis in AR mice (activation and involvement of the p38 mitogen-activated protein kinase in olfactory sensory neuronal apoptosis of OVA-induced allergic rhinitis). Brain Behav. 2019;9:e01295. doi:10.1002/brb3.1295
  • Xu H, Shu H, Zhu J, et al. Inhibition of TLR4 inhibits allergic responses in murine allergic rhinitis by regulating the NF-KB pathway. Exp Ther Med. 2019;18(1):761–768. doi:10.3892/etm.2019.7631
  • Li YQ, Zhong Y, Xiao XP, et al. IL-33/ST2 axis promotes the inflammatory response of nasal mucosal epithelial cells through inducing the ERK1/2 pathway. Innate Immun. 2020;26(6):505–513. doi:10.1177/1753425920918911
  • Van Nguyen T, Piao CH, Fan YJ, et al. Anti-allergic rhinitis activity of α-lipoic acid via balancing Th17/Treg expression and enhancing Nrf2/HO-1 pathway signaling. Sci Rep. 2020;10(1):12528. doi:10.1038/s41598-020-69234-1
  • Jiaru F, Minggang W, Lin Feng P, et al. Research progress of phosphatidylinositol 3-kinase/protein kinase/mammalian rapamycin target pathway in allergic rhinitis. Guang Med J. 2022;44(08):902–906.
  • May JR, Dolen WK. Management of allergic rhinitis: a review for the community pharmacist. Clin Ther. 2017;39(12):2410–2419. doi:10.1016/j.clinthera.2017.10.006
  • Seidman MD, Gurgel RK, Lin SY, et al. Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg. 2015;152(1Suppl):S1–43. doi:10.1177/0194599814561600
  • Beard S. Rhinitis. Prim Care. 2014;41(1):33–46. doi:10.1016/j.pop.2013.10.005
  • Guo LY, Hung TM, Bae KH, et al. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol. 2008;591:293–299. doi:10.1016/j.ejphar.2008.06.074
  • Chen F, Castranova V, Shi X, et al. New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 1999;45(1):7–17. doi:10.1093/clinchem/45.1.7
  • Bui TT, Piao CH, Song CH, et al. Bupleurum chinense extract ameliorates an OVA-induced murine allergic asthma through the reduction of the Th2 and Th17 cytokines production by inactivation of NF kappaB pathway. Biomed Pharmacother. 2017;91:1085–1095. doi:10.1016/j.biopha.2017.04.133
  • Wei DZ, Guo XY, Lin LN, et al. Effects of Angelicin on Ovalbumin (OVA)-induced airway inflammation in a mouse model of asthma. Inflammation. 2016;39:1876–1882. doi:10.1007/s10753-016-0423-2
  • Wu Y, Su SA, Xie Y, et al. Murine models of vascular endothelial injury: techniques and pathophysiology. Thromb Res. 2018;169:64–72. doi:10.1016/j.thromres.2018.07.014
  • Chen K, Le Y, Liu Y, et al. A critical role for the g protein-coupled receptor mFPR2 in airway inflammation and immune responses. J Immunol. 2010;184(7):3331–3335. doi:10.4049/jimmunol.0903022
  • Jiang D, Liang J, Li Y, et al. The role of Toll-like receptors in non-infectious lung injury. Cell Res. 2006;16(8):693–701. doi:10.1038/sj.cr.7310085
  • Kong F, Ye B, Lin L, et al. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother. 2016;82:167–172. doi:10.1016/j.biopha.2016.04.043
  • Hu N, Wang C, Dai X, et al. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. J Ethnopharmacol. 2020;248:112361. doi:10.1016/j.jep.2019.112361
  • Fransson M, Adner M, Erjefält J, et al. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis. Respir Res. 2005;6(1):100. doi:10.1186/1465-9921-6-100
  • Yoshimura A, Ohishi HM, Aki D, et al. Regulation of TLR signaling and inflammation by SOCS family proteins. J Leukoc Biol. 2004;75(3):422–427. doi:10.1189/jlb.0403194
  • Tian B, Ma X, Jiang R. Daphnetin mitigates ovalbumin-induced allergic rhinitis in mice by regulating Nrf2/HO-1 and TLR4/NF-kB signaling. Am J Rhinol Allergy. 2023;37(1):19–25. doi:10.1177/19458924221124363
  • Gangemi S, Franchina T, Minciullo PL, et al. axis: a new pathological mechanisms for EGFR tyrosine kinase inhibitors-associated skin toxicity. J Cell Biochem. 2013;114(12):2673–2676. doi:10.1002/jcb.24614
  • Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110. doi:10.4172/2155-9899.1000110
  • Haenuki Y, Matsushita K, Futatsugi-Yumikura S, et al. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012;130(1):184–94.e11. doi:10.1016/j.jaci.2012.02.013
  • Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A. 2007;104(1):282–287. doi:10.1073/pnas.0606854104
  • Ho LH, Ohno T, Oboki K, et al. induces IL-13 production by mouse mast cells independently of IgE-Fc RI signals. J Leuko Biol. 2007;82(6):1481–1490. doi:10.1189/jlb.0407200
  • Huang R, Mao W, Wang G, et al. Synergistic relationship between TSLP and IL-33/ST2 signaling pathways in allergic rhinitis and the effects of hypoxia. Int Forum Allergy Rhinol. 2020;10(4):511–520. doi:10.1002/alr.22504
  • Xi YD, Yu HL, Ding J, et al. Flavonoids protect cerebrovascular endothelial cells through Nrf2 andPI3K from β-amyloid peptide-induced oxidative damage. Curr Neurovasc Res. 2012;9(1):32–41. doi:10.2174/156720212799297092
  • Zhang Y, Liu B, Chen X, et al. Ameliorates behavioral dysfunction and neurological deficits in a d-galactose-induced aging mouse model through activation of PI3K/Akt/Nrf2 pathway. Rejuvenation Res. 2017;20(6):462–472. doi:10.1089/rej.2017.1960
  • Zhao M, Tang X, Gong D, et al. Bungeanum improves cognitive dysfunction and neurological deficits in D-galactose-induced aging mice via activating PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol. 2020;11:71. doi:10.3389/fphar.2020.00071
  • Meng M, Zhang L, Ai D, et al. Ameliorates β-amyloid-induced neurotoxicity in PC12 cells by activating P13K/Akt/Nrf2 signaling pathway. Front Pharmacol. 2021;12:659955. doi:10.3389/fphar.2021.659955
  • Hsueh KC, Lin YJ, Lin HC, et al. Serum leptin and adiponectin levels correlate with severity of allergic rhinitis. Pediatr Allergy Immunol. 2010;21(1 Pt 2):155–159. doi:10.1111/j.1399-3038.2009.00878.x
  • Ciprandi G, De Amici M, Tosca MA, et al. Serum leptin levels depend on allergen exposure in patients with seasonal allergic rhinitis. Immunol Invest. 2009;38(8):681–689. doi:10.3109/08820130903107965
  • Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol. 2005;174(6):3137–3142. doi:10.4049/jimmunol.174.6.3137
  • Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68(4):437–446. doi:10.1189/jlb.68.4.437
  • Zeng Q, Luo X, Tang Y, et al. Leptin regulated ILC2 Cell through the PI3K/AKT pathway in allergic rhinitis. Mediators Inflamm. 2020;2020:4176082. doi:10.1155/2020/4176082
  • Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;11(10):1618. doi:10.3390/cancers11101618
  • Haines DD, Lekli I, Teissier P, et al. Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: focus on cardio vascular, lung, neurological and kidney disorders. Acta Physiol. 2012;204(4):487–501. doi:10.1111/j.1748-1716.2011.02387.x
  • Qu LL, Yu B, Li Z, et al. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother Res. 2016;30(3):402–411. doi:10.1002/ptr.5541
  • Liu J, Liu L, Cui Y, et al. p38 MAPK regulates Th2 cytokines release in PBMCs in allergic rhinitis rats. J Huazhong Univ Sci Technolog Med Sci. 2010;30(2):222–225. doi:10.1007/s11596-010-0218-x
  • Brandes MS, Gray NE. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro. 2020;12:1759091419899782. doi:10.1177/1759091419899782
  • Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: the therapeutic role of Nrf2 activators. Neurochem Int. 2021;145:105014. doi:10.1016/j.neuint.2021.105014
  • Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharma Cother. 2020;129:110373. doi:10.1016/j.biopha.2020.11037
  • Piao CH, Song CH, Lee EJ, et al. Saikosaponin A ameliorates nasal inflammation by suppressing IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced, allergic rhinitis. Chem Biol Interact. 2020;315:108874. doi:10.1016/j.cbi.2019.108874
  • Shuo H, Shuang L, Zhe C, et al. Effect of Tanshinone IIA on mast cell-mediated allergic rhinitis through modulation of the NF- κ B pathway. J Wuhan Univ Med Edition. 2018;39(2):223.
  • Li H, Guo D, Zhang L, et al. Glycyrrhizin attenuates histamine-mediated MUC5AC upregulation, inflammatory cytokine production, and aquaporin 5 downregulation through suppressing the NF-κB pathway in human nasal epithelial cells. Chem Biol Interact. 2018;285:21–26. doi:10.1016/j.cbi.2018.02.010
  • Guo J, Xu S. Astragaloside IV suppresses histamine-induced inflammatory factors and mucin 5 subtype AC overproduction in nasal epithelial cells via regulation of inflammation-related genes. Bioengineered. 2021;12(1):6045–6056. doi:10.1080/21655979.2021.1965813
  • Zhou YJ, Wang H, Sui HH, et al. Inhibitory effect of baicalin on allergic response in ovalbumin-induced allergic rhinitis Guinea pigs and lipopolysaccharide-stimulated human mast cells. Inflamm Res. 2016;65(8):603–612. doi:10.1007/s00011-016-0943-0
  • Zhang M, Wang S, Liu L. Triptolide intervention in the TLR-NF-KB pathway to play an immunosuppressive role. Chin Herbs. 2017;45:9.
  • Dong J, Xu O, Wang J, et al. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats. Immunopharmacol Immunotoxicol. 2021;43(3):319–327. doi:10.1080/08923973.2021.1905659
  • Wang K, Meng Y, Wang Y, et al. Molecular mechanism of the treatment of allergic rhinitis. J Transl Med. 2021;10(05):330–334.
  • Gersey ZC, Rodriguez GA, Barbarite E, et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer. 2017;17(1):99. doi:10.1186/s12885-017-3058-2
  • Chen H, Fu W, Chen H, et al. Magnolol attenuates the inflammation and enhances phagocytosis through the activation of MAPK, NF-κB signal pathways in vitro and in vivo. Mol Immunol. 2019;105:96–106. doi:10.1016/j.molimm.2018.11.008
  • Gao W, Jin Z, Zheng Y, et al. Psoralen inhibits the inflammatory response and mucus production in allergic rhinitis by inhibiting the activator protein 1 pathway and the downstream expression of cystatin‑SN. Mol Med Rep. 2021;24(3):652. doi:10.3892/mmr.2021.12291
  • Huang J, Chen X, Xie A. Formononetin ameliorates IL‑13‑induced inflammation and mucus formation in human nasal epithelial cells by activatingtheSIRT1/Nrf2 signaling pathway. Mol Med Rep. 2021;24(6):832. doi:10.3892/mmr.2021.12472
  • Lihong N, Qing X, Wei X, et al. Effect of a nasal nasal gel agent on the nuclear transcription factor- KB signaling pathway in Guinea pigs with allergic rhinitis. Chin J Trad Chin Med. 2020;31(02):441–444.
  • Fukuoka S, Adachi N, Hisamitsu T, et al. Shoseiryuto Ameliorated TDI-induced allergic rhinitis by suppressing IL-33 release from nasal epithelial cells. Pharmaceutics. 2022;14(10):2083. doi:10.3390/pharmaceutics14102083
  • Song Renjie IN. IL-33 and Allergic Rhinitis [D]. Hefei: Anhui University of Traditional Chinese Medicine; 2015.
  • Liang X, Liu CS, Xia T, et al. Identification of active compounds of mahuang fuzi xixin decoction and their mechanisms of action by LC-MS/MS and network pharmacology. Evid Based Complement Alternat Med. 2020;2020:3812180. doi:10.1155/2020/3812180
  • Zhong Y, Wang X, Xu G, et al. Modified Yupingfeng formula for the treatment of stable chronic obstructive pulmonary disease: a systematic review of randomized controlled trials. Afr J Tradit Complement Altern Med. 2013;11(1):1–14.
  • Sun Y, Liu H, Xiao X, et al. Study the mechanism of the treatment of rhinitis based on network pharmacology technology. Chin Patent Med. 2021;43(10):2893–2898.
  • Xing X, Liang Y, Wang H. Based on MAPK signaling pathway, the mechanism of Chinese medicine in immune regulation in allergic rhinitis rats. Liaon J Trad Chin Med. 2019;46(12):2647–2650+2686.
  • Liang Z, Oh K, Wang Y, et al. Cell type-specific qualitative and quantitative analysis of saikosaponins in three Bupleurum species using laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry. JPharm Biomed Anal. 2014;97:157–165. doi:10.1016/j.jpba.2014.04.033
  • Hsu MJ, Cheng JS, Huang HC. Effect of saikosaponin, a triterpene saponin, on apoptosis in lymphocytes: association with c-myc, p53, and bcl-2 mRNA. Br J Pharmacol. 2000;131(7):1285–1293. doi:10.1038/sj.bjp.0703559
  • Chen JC, Chang NW, Chung JG, Chen KC. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. Am J Chin Med. 2003;31(3):363–377. doi:10.1142/S0192415X03001065
  • Hsu YL, Kuo PL, Chiang LC, et al. Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Lett. 2004;213(2):213–221. doi:10.1016/j.canlet.2004.03.044
  • Zhao H, Li S, Zhang H, et al. Saikosaponin A protects against experimental sepsis via inhibition of NOD2-mediated NF-κB activation. Exp Ther Med. 2015;10(2):823–827. doi:10.3892/etm.2015.2558
  • Du ZA, Sun MN, Hu ZS. Saikosaponin a Ameliorates LPS-induced acute lung injury in mice. Inflammation. 2018;41(1):193–198. doi:10.1007/s10753-017-0677-3
  • Xu QQ, Xu YJ, Yang C, et al. Sodium tanshinone IIA sulfonate attenuates scopolamine-induced cognitive dysfunctions via improving cholinergic system. Biomed Res Int. 2016;2016:9852536. doi:10.1155/2016/9852536
  • Li Q, Shen L, Wang Z, et al. Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 2016;84:106–114. doi:10.1016/j.biopha.2016.09.014
  • Wang X, Wei Y, Yuan S, et al. Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer. 2005;116(5):799–807. doi:10.1002/ijc.20880
  • Chen R, Chen W, Huang X, et al. Tanshinone IIA attenuates heart failure via inhibiting oxidative stress in myocardial infarction rats. Mol Med Rep. 2021;23(6):404. doi:10.3892/mmr.2021.12043
  • Sato H, Goto W, Yamamura J, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antiviral Res. 1996;30(2–3):171–177. doi:10.1016/0166-3542(96)00942-4
  • Rahman S, Sultana S. Chemo preventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistar rats. Chem Biol Interact. 2006;160(1):61–69. doi:10.1016/j.cbi.2005.12.003
  • Iida R, Otsuka Y, Matsumoto K, et al. Pseudoaldosteronism due to the concurrent use of two herbal medicines containing glycyrrhizin: interaction of glycyrrhizin with angiotensin-converting enzyme inhibitor. Clin Exp Nephrol. 2006;10(2):131–135. doi:10.1007/s10157-006-0415-x
  • Jayaprakasam B, Doddaga S, Wang R, et al. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem. 2009;57(3):820–825. doi:10.1021/jf802601j
  • Li XL, Zhou AG, Zhang L, et al. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. Int J Mol Sci. 2011;12(2):905–916. doi:10.3390/ijms12020905
  • Ren S, Zhang H, Mu Y, et al. Pharmacological effects of Astragaloside IV: a literature review. J Tradit Chin Med. 2013;33(3):413–416. doi:10.1016/s0254-6272(13)60189-2
  • Guo H, Liu MP. Mechanism of traditional Chinese medicine in the treatment of allergic rhinitis. Chin Med J. 2013;126(4):756–760. doi:10.3760/cma.j.issn.0366-6999.20121844
  • Li L, Hou X, Xu R, et al. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol. 2017;31(1):17–36. doi:10.1111/fcp.12232
  • Zhang J, Wu C, Gao L, et al. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Adv Pharmaco. 2020;l(87):89–112. doi:10.1016/bs.apha.2019.08.002
  • Xu L, Li J, Zhang Y, et al. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J Ethnopharmacol. 2017:208:199–206. doi:10.1016/j.jep.2017.07.013
  • Miao J, Haibo Z, Ying D. Research progress on pharmacological effects and clinical application of triptera gontoline polyglycosides. Chin J Trad Chin Med. 2021;39(03):59–63.
  • Longyue H, Hongxin N, Xuechao Y, et al. Research progress of luteolin extraction and purification process. Chin Traditional Herbal Drugs. 2021;52(04):1185–1192.
  • Rajput SA, Shaukat A, Wu K, et al. Luteolin alleviates aflatoxinB1-induced apoptosis and oxidative stress in the liver of mice through activation of Nrf2 signaling pathway. Antioxidants. 2021;10(8):1268. doi:10.3390/antiox10081268
  • Das AK, Mizuguchi H, Kodama M, et al. Sho-seiryu-to suppresses histamine signaling at the transcriptional level in TDI-sensitized nasal allergy model rats. Allergol Int. 2009;58(1):81–88. doi:10.2332/allergolint.O-07-526
  • Tanaka A, Ohashi Y, Kakinoki Y, et al. The herbal medicine shoseiryu-to inhibits allergen-induced synthesis of tumour necrosis factor alpha by peripheral blood mononuclear cells in patients with perennial allergic rhinitis. Acta Otolaryngol Suppl. 1998;538:118–125.
  • Ikeda Y, Iijima OT, Iizuka A, et al. Anti-inflammatory effects of mao-bushi-saishin-to in mice and rats. Am J Chin Med. 1998;26(2):171–179. doi:10.1142/S0192415X98000221
  • Chai FN, Ma WY, Zhang J, et al. Coptisine from Rhizoma coptidis exerts an anti-cancer effect on hepatocellular carcinoma by up-regulating miR-122. Biomed Pharmacother. 2018;103:1002–1011. doi:10.1016/j.biopha.2018.04.052
  • Han B, Jiang P, Li Z, et al. Coptisine-induced apoptosis in human colon cancer cells (HCT-116) is mediated by PI3K/Aktand mitochondrial- associated apoptotic pathway. Phytomedicine. 2018;48:152–160. doi:10.1016/j.phymed.2017.12.027
  • Zhou L, Yang F, Li G, et al. Coptisine induces apoptosis in human hepatoma cells through activating 67-kDa laminin receptor/cGMP signaling. Front Pharmacol. 2018;9:517. doi:10.3389/fphar.2018.00517
  • Wu J, Zhang H, Hu B, et al. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol. 2016;780:106–114. doi:10.1016/j.ejphar.2016.03.037
  • Fu S, Ni S, Wang D, et al. Coptisine suppresses mast cell degranulation and ovalbumin-induced allergic rhinitis. Molecules. 2018;23(11):3039. doi:10.3390/molecules23113039
  • Wang HZ, Hong M, Gui LL, et al. Effect of Yupingfeng San against OVA-induced allergic asthma in mice. Zhongguo Zhong Yao Za Zhi. 2013;38(7):1052–1055.
  • Chan PH, To CY, Chan EY, et al. A randomized placebo-controlled trial of traditional Chinese medicine as an add-on therapy to oral montelukast in the treatment of mild persistent asthma in children. Complement Ther Med. 2016;29:219–228. doi:10.1016/j.ctim.2016.10.010
  • Du CY, Choi RC, Zheng KY, et al. Yu Ping Feng San, an ancient Chinese herbal decoction containing astragali radix, atractylodis macrocephalae rhizoma and saposhnikoviae radix, regulates the release of cytokines in murine macrophages. PLoS One. 2013;8(11):e78622. doi:10.1371/journal.pone.0078622
  • Sun H, Ni X, Zeng D, et al. Bidirectional immunomodulating activity of fermented polysaccharides from Yupingfeng. Res Vet Sci. 2017;110:22–28. doi:10.1016/j.rvsc.2016.10.015
  • Lingzi H, Wenliang L, Wenhui Z. Research progress of prevention and treatment of liver disease by Yupingfeng powder. World Chin Med. 2018;13(9):2357–2361.
  • Zhao Z, Gao Y, Liu W. Modern pharmacology of Yupingfeng Sanand its research progress in dermatology. Chin J Dermatovenereol Integr Tradit Western Med. 2018;17:2.
  • Mingyong Y, Zhonglin Z, Dan W. Study on the antioxidant activity of Yupingfeng powder. Hebei Med. 2014;20(6):901–904.
  • Chen H, Feng W, Lu Y, et al. Effects and mechanism of Chinese medicine Jiawei Yupingfeng in a mouse model of allergic rhinitis. J Integr Med. 2021;19(4):354–361. doi:10.1016/j.joim.2021.01.012
  • Luo Q, Zhang CS, Yang LZ, et al. Potential effectiveness of Chinese herbal medicine Yu ping feng san for adult allergic rhinitis: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Altern Med. 2017;17(1):485. doi:10.1186/s12906-017-1988-5
  • Zhou T, Shi J, Li X. Role of PI3K/Akt signaling pathway in the innate immune of sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018;30(11):1091–1094. Chinese. doi:10.3760/cma.j.issn.2095-4352.2018.011.016
  • Yang S, Fu Q, Deng H, et al. Mechanisms and molecular targets of the Yu-Ping-Feng powder for allergic rhinitis, based on network pharmacology. Medicine. 2021;100(35):e26929. doi:10.1097/MD.0000000000026929
  • Xianghong Z, Ying X. Progress on the role of glial cells. Straits Pharmacy. 2013;25(3):210–213.
  • Duan S, Xinling H, Ying L, et al. Close junction expression of the nasal mucosal epithelium in allergic rhinitis. Otolaryngol Head Neck Surg China. 2021;28(05):293–296.
  • Qianhong B, Lingyun L, Weiqun Z, et al. Detection and analysis of inflammatory factors, immunoglobulin and T lymphocyte subsets in the serum of patients with allergic rhinitis. Chin J Health Inspect. 2020;2020:30.
  • Wang YC, Ma DF, Jiang P, et al. Guizhi Decoction () inhibits cholinergic trans differentiation by regulating imbalance of NGF and LIF in salt-sensitive hypertensive heart failure rats. Chin J Integr Med. 2020;26(3):188–196. doi:10.1007/s11655-019-2706-6
  • Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113–204. doi:10.1016/B978-0-12-800173-8.00003-9
  • Keshari RS, Verma A, Barthwal MK, et al. Reactive oxygen s pecies-induced activation of ERK and p38 MAPK mediates PMA-induced NE Ts release from human neutrophils. J Cell Biochem. 2013;114(3):532–540. doi:10.1002/jcb.24391
  • McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8:9–10.
  • Thakare VN, Osama MM, Naik SR. Therapeutic potential of curcumin in experimentally induced allergic rhinitis in Guinea pigs. Int Immunopharmacol. 2013;17(1):18–25. doi:10.1016/j.intimp.2013.04.025
  • Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem. 2009;49(9):908–911.
  • Ide N, Lau BH. Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury. J Pharm Pharmacol. 1997;49(9):908–911. doi:10.1111/j.2042-7158.1997.tb.06134.x
  • Ray B, Chauhan NB, Lahiri DK. Oxidative insults to neurons and synapse are prevented by aged garlic extract and S-allyl-L-cysteine treatment in the neuronal culture and APP-Tg mouse model. J Neurochem. 2011;117(3):388–402. doi:10.1111/j.1471-4159.2010.07145.x
  • Anoush M, Eghbal MA, Fathiazad F, et al. The protective effects of garlic extract against Acetaminophen-induced oxidative stress and glutathione depletion. Pak J Biol Sci. 2009;12(10):765–771. doi:10.3923/pjbs.2009.765.771
  • Nahdi A, Hammami I, Kouidhi W, et al. Protective effects of crude garlic by reducing iron-mediated oxidative stress, proliferation and autophagy in rats. J Mol Histol. 2010;41(4–5):233–245. doi:10.1007/s10735-010-9283-5
  • Phan HTL, Nam YR, Kim HJ, et al. In-vitro and in-vivo anti-allergic effects of magnolol on allergic rhinitis via inhibition of ORAI1 and ANO1 channels. J Ethnopharmacol. 2022;289:115061. doi:10.1016/j.jep.2022.115061
  • Seo E, Kang H, Oh YS, et al. Seed extract attenuates diabetic nephropathy by inhibiting renal fibrosis and apoptosis in streptozotocin-induced diabetic mice. Nutrients. 2017;9(8):828. doi:10.3390/nu9080828
  • Li X, Yu C, Hu Y, et al. New application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects. Front Cell Infect Microbiol. 2018;8:178. doi:10.3389/fcimb.2018.00178
  • Bejjani F, Evanno E, Zibara K, et al. TheAP-1transcriptional complex: local switch or remote command? Biochim Biophys Acta Rev Cancer. 2019;1872(1):11–23. doi:10.1016/j.bbcan.2019.04.003
  • Gampe N, Darcsi A, Lohner S, et al. Characterization and identification of ISO flavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC-MS/MS and NMR. J Pharm Biomed Anal. 2016;123:74–81. doi:10.1016/j.jpba.2016.01.058
  • Ong SKL, Shanmugam MK, Fan L, et al. Focus on formononetin: anticancer potential and mol ecular targets. Cancers. 2019;11(5):611. doi:10.3390/cancers11050611
  • Yi L, Cui J, Wang W, et al. Formononetin attenuates airway inflammation and oxidative stress in murine allergic asthma. Front Pharmacol. 2020;11:533841. doi:10.3389/fphar.2020.533841
  • Wei Choo CY, Yeh KW, Huang JL, et al. Oxidative stress is associated with atopic indices in relation to childhood rhinitis and asthma. J Microbiol Immunol Infect. 2021;54(3):466–473. doi:10.1016/j.jmii.2020.01.009
  • Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–650. doi:10.1080/01926230290166724
  • Sim CS, Lee JH, Kim SH, et al. Oxidative stress in schoolchildren with allergic rhinitis: propensity score matching case-control study. Ann Allergy Asthma Immunol. 2015;115(5):391–395. doi:10.1016/j.anai.2015.07.022
  • Celik M, Tuncer A, Soyer OU, et al. Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr Allergy Immunol. 2012;23(6):556–561. doi:10.1111/j.1399-3038.2012.01294.x