412
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis

, , & ORCID Icon
Pages 4633-4660 | Received 15 Apr 2023, Accepted 27 Sep 2023, Published online: 17 Oct 2023

References

  • Khanna D, Tashkin DP, Denton CP, Renzoni EA, Desai SR, Varga J. Etiology, Risk Factors, and Biomarkers in Systemic Sclerosis with Interstitial Lung Disease. Am J Respir Crit Care Med. 2020;201(6):650–660. doi:10.1164/rccm.201903-0563CI
  • Kang EH, Ha YJ, Lee YJ. Autoantibody Biomarkers in Rheumatic Diseases. Int J Mol Sci. 2020;21(4):1382. doi:10.3390/ijms21041382
  • Ligon C, Hummers LK. Biomarkers in Scleroderma: progressing from Association to Clinical Utility. Curr Rheumatol Rep. 2016;18(3):17. doi:10.1007/s11926-016-0565-0
  • Graßhoff H, Fourlakis K, Comdühr S, Riemekasten G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines. 2022;10(9):2150. doi:10.3390/biomedicines10092150
  • Chairta PP, Nicolaou P, Christodoulou K. Enriched in silico analysis of MS-based extracted candidate proteomic biomarkers highlights pathogenic pathways in systemic sclerosis. Sci Rep. 2023;13(1):1934. doi:10.1038/s41598-023-29054-5
  • Abignano G, Del Galdo F. Biomarkers as an opportunity to stratify for outcome in systemic sclerosis. Eur J Rheumatol. 2020;7(Suppl 3):S193–S202.
  • Bălănescu P, Bălănescu A, Bălănescu E, Băicuş C. Candidate proteomic biomarkers in systemic sclerosis discovered using mass-spectrometry: an update of a systematic review (2014-2020). Rom J Intern Med. 2021;59(2):101–111. doi:10.2478/rjim-2020-0037
  • Utsunomiya A, Oyama N, Hasegawa M. Potential Biomarkers in Systemic Sclerosis: a Literature Review and Update. J Clin Med. 2020;9(11):3388. doi:10.3390/jcm9113388
  • Wermuth PJ, Piera-Velazquez S, Jimenez SA. Identification of novel systemic sclerosis biomarkers employing aptamer proteomic analysis. Rheumatology. 2018;57(10):1698–1706. doi:10.1093/rheumatology/kex404
  • Bălănescu P, Bălănescu E, Băicuș C, Bălănescu A. Circulatory cytokeratin 17, marginal zone B1 protein and leucine-rich α2-glycoprotein-1 as biomarkers for disease severity and fibrosis in systemic sclerosis patients. Biochem Med (Zagreb). 2022;32(3):030707. doi:10.11613/BM.2022.030707
  • Gigante A, Navarini L, Margiotta D, et al. Angiogenic and angiostatic factors in renal scleroderma-associated vasculopathy. Microvasc Res. 2017;114:41–45. doi:10.1016/j.mvr.2017.06.003
  • Mostmans Y, Cutolo M, Giddelo C, et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: a systematic review. Autoimmun Rev. 2017;16(8):774–786. doi:10.1016/j.autrev.2017.05.024
  • Zhang Y, Zhu M, Xie L, Zhang H, Deng T. Identification and validation of key immune-related genes with promising diagnostic and predictive value in systemic sclerosis. Life Sci. 2023;312:121238. doi:10.1016/j.lfs.2022.121238
  • Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol. 2019;15(5):288–302. doi:10.1038/s41584-019-0212-z
  • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685–1699. doi:10.1016/S0140-6736(17)30933-9
  • Frantz C, Avouac J, Distler O, et al. Impaired quality of life in systemic sclerosis and patient perception of the disease: a large international survey. Semin Arthritis Rheum. 2016;46(1):115–123. doi:10.1016/j.semarthrit.2016.02.005
  • D’Oria M, Gandin I, Riccardo P, et al. Correlation between Microvascular Damage and Internal Organ Involvement in Scleroderma: focus on Lung Damage and Endothelial Dysfunction. Diagnostics. 2022;13(1):55. doi:10.3390/diagnostics13010055
  • van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65(11):2737–2747. doi:10.1002/art.38098
  • Nihtyanova SI, Schreiber BE, Ong VH, et al. Prediction of pulmonary complications and long-term survival in systemic sclerosis. Arthritis Rheumatol. 2014;66(6):1625–1635. doi:10.1002/art.38390
  • Khanna D, Lescoat A, Roofeh D, et al. Systemic Sclerosis-Associated Interstitial Lung Disease: how to Incorporate Two Food and Drug Administration-Approved Therapies in Clinical Practice. Arthritis Rheumatol. 2022;74(1):13–27. doi:10.1002/art.41933
  • Cavazzana I, Vojinovic T, Airo’ P, et al. Systemic Sclerosis-Specific Antibodies: novel and Classical Biomarkers. Clin Rev Allergy Immunol. 2022;64(3):412–430. doi:10.1007/s12016-022-08946-w
  • Soulaidopoulos S, Triantafyllidou E, Garyfallos A, et al. The role of nailfold capillaroscopy in the assessment of internal organ involvement in systemic sclerosis: a critical review. Autoimmun Rev. 2017;16(8):787–795. doi:10.1016/j.autrev.2017.05.019
  • Vondenberg JA, Muruganandam M, Nunez SE, Emil NS, Sibbitt WL. Increased malignancies in systemic sclerosis. Int J Rheum Dis. 2022;25(1):90–92. doi:10.1111/1756-185X.14244
  • Varjú C, Pauling JD, Saketkoo LA. Multi-Organ System Screening, Care, and Patient Support in Systemic Sclerosis. Rheum Dis Clin North Am. 2023;49(2):211–248. doi:10.1016/j.rdc.2023.01.002
  • Affandi AJ, Radstake TR, Marut W. Update on biomarkers in systemic sclerosis: tools for diagnosis and treatment. Semin Immunopathol. 2015;37(5):475–487. doi:10.1007/s00281-015-0506-4
  • Mihai C, Tervaert JW. Anti-endothelial cell antibodies in systemic sclerosis. Ann Rheum Dis. 2010;69(2):319–324. doi:10.1136/ard.2008.102400
  • Fineschi S, Goffin L, Rezzonico R, et al. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of toll-like receptor 4. Arthritis Rheum. 2008;58(12):3913–3923. doi:10.1002/art.24049
  • Moroncini G, Svegliati Baroni S, Gabrielli A. Agonistic antibodies in systemic sclerosis. Immunol Lett. 2018;195:83–87. doi:10.1016/j.imlet.2017.10.007
  • Sato S, Fujimoto M, Hasegawa M, et al. Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology. 2004;43(10):1261–1266. doi:10.1093/rheumatology/keh303
  • Tan FK, Arnett FC, Antohi S, et al. Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol. 1999;163(2):1066–1072. doi:10.4049/jimmunol.163.2.1066
  • Fritzler MJ, Bentow C, Beretta L, et al. Anti-U11/U12 Antibodies as a Rare but Important Biomarker in Patients with Systemic Sclerosis: a Narrative Review. Diagnostics. 2023;13(7):1257. doi:10.3390/diagnostics13071257
  • Nihtyanova SI, Denton CP. Autoantibodies as predictive tools in systemic sclerosis. Nat Rev Rheumatol. 2010;6(2):112–116. doi:10.1038/nrrheum.2009.238
  • Clark KEN, Campochiaro C, Host LV, et al. Combinations of scleroderma hallmark autoantibodies associate with distinct clinical phenotypes. Sci Rep. 2022;12(1):11212. doi:10.1038/s41598-022-15062-4
  • Chepy A, Bourel L, Koether V, Launay D, Dubucquoi S, Sobanski V. Can Antinuclear Antibodies Have a Pathogenic Role in Systemic Sclerosis? Front Immunol. 2022;13:930970. doi:10.3389/fimmu.2022.930970
  • Tsai CY, Hsieh SC, Wu TH, et al. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis. Int J Mol Sci. 2020;21(9):3069. doi:10.3390/ijms21093069
  • Hoa S, Lazizi S, Baron M, Wang M, Fritzler MJ, Hudson M; Canadian Scleroderma Research Group. Association between autoantibodies in systemic sclerosis and cancer in a national registry. Rheumatology. 2022;61(7):2905–2914. doi:10.1093/rheumatology/keab735
  • Liem SIE, Neppelenbroek S, Fehres CM, et al. Autoreactive B cell responses targeting nuclear antigens in systemic sclerosis: implications for disease pathogenesis. Semin Arthritis Rheum. 2023;58:152136. doi:10.1016/j.semarthrit.2022.152136
  • Loisel S, Lansiaux P, Rossille D, et al. Regulatory B Cells Contribute to the Clinical Response After Bone Marrow-Derived Mesenchymal Stromal Cell Infusion in Patients With Systemic Sclerosis. Stem Cells Transl Med. 2023:szad010. doi:10.1093/stcltm/szad010
  • Arnett FC. HLA and autoimmunity in scleroderma (systemic sclerosis). Int Rev Immunol. 1995;12(2–4):107–128. doi:10.3109/08830189509056707
  • Kuwana M, Okano Y, Kaburaki J, Medsger TA, Wright TM. Autoantibodies to RNA polymerases recognize multiple subunits and demonstrate cross-reactivity with RNA polymerase complexes. Arthritis Rheum. 1999;42(2):275–284. doi:10.1002/1529-0131(199902)42:2<275::AID-ANR9>3.0.CO;2-P
  • Kuwana M, Pandey JP, Silver RM, et al. HLA class II alleles in systemic sclerosis patients with anti-RNA polymerase I/III antibody: associations with subunit reactivities. J Rheumatol. 2003;30(11):2392–2397.
  • Hanson AL, Sahhar J, Ngian GS, et al. Contribution of HLA and KIR Alleles to Systemic Sclerosis Susceptibility and Immunological and Clinical Disease Subtypes. Front Genet. 2022;13:913196. doi:10.3389/fgene.2022.913196
  • Acosta-Herrera M, Kerick M, Lopéz-Isac E, et al. Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes. Ann Rheum Dis. 2021;80(8):1040–1047. doi:10.1136/annrheumdis-2021-219884
  • Caselli E, Soffritti I, D’Accolti M, et al. HHV-6A Infection and Systemic Sclerosis: clues of a Possible Association. Microorganisms. 2019;8(1):39. doi:10.3390/microorganisms8010039
  • Gourh P, Safran SA, Alexander T, et al. HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc Natl Acad Sci U S A. 2020;117(1):552–562. doi:10.1073/pnas.1906593116
  • Kerick M, Acosta-Herrera M, Simeón-Aznar CP, et al. Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis. NPJ Genom Med. 2022;7(1):57. doi:10.1038/s41525-022-00327-8
  • O’Reilly S. Toll-like receptor triggering in systemic sclerosis: time to target. Rheumatology. 2023;62(SI):SI12–SI19. doi:10.1093/rheumatology/keac421
  • Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns: implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol. 2023;143(10):1877–1885. doi:10.1016/j.jid.2023.04.030
  • Choreño-Parra JA, Cervantes-Rosete D, Jiménez-álvarez LA, et al. Dendritic cells drive profibrotic inflammation and aberrant T cell polarization in systemic sclerosis. Rheumatology. 2023;62(4):1687–1698. doi:10.1093/rheumatology/keac489
  • Liu X, Mayes MD, Tan FK, et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 2013;65(1):226–235. doi:10.1002/art.37742
  • Wang W, Bhattacharyya S, Marangoni RG, et al. The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J Scleroderma Relat Disord. 2020;5(1):40–50. doi:10.1177/2397198319865367
  • Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci. 2023;24(15):12524. doi:10.3390/ijms241512524
  • Akter T, Silver RM, Bogatkevich GS. Recent advances in understanding the pathogenesis of scleroderma-interstitial lung disease. Curr Rheumatol Rep. 2014;16(4):411. doi:10.1007/s11926-014-0411-1
  • Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of Interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 2014;66(3):714–725. doi:10.1002/art.38288
  • Bellocchi C, Assassi S, Lyons M, et al. Proteomic aptamer analysis reveals serum markers that characterize preclinical systemic sclerosis (SSc) patients at risk for progression toward definite SSc. Arthritis Res Ther. 2023;25(1):15. doi:10.1186/s13075-023-02989-w
  • Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal. 2018;12(1):301–308. doi:10.1007/s12079-017-0422-6
  • Kii I. Periostin Functions as a Scaffold for Assembly of Extracellular Proteins. Adv Exp Med Biol. 2019;1132:23–32.
  • El-Adili F, Lui JK, Najem M, et al. Periostin overexpression in scleroderma cardiac tissue and its utility as a marker for disease complications. Arthritis Res Ther. 2022;24(1):251. doi:10.1186/s13075-022-02943-2
  • Distler O, Distler J, Kowal-Bielecka O, Gay RE, Müller-Ladner U, Gay S. Chemokines and chemokine receptors in the pathogenesis of systemic sclerosis. Mod Rheumatol. 2002;12(2):107–112. doi:10.3109/s101650200019
  • Bayati P, Poormoghim H, Mojtabavi N. Aberrant expression of miR-138 as a novel diagnostic biomarker in systemic sclerosis. Biomark Insights. 2022;17:11772719221135442. doi:10.1177/11772719221135442
  • Bayati P, Kalantari M, Assarehzadegan MA, Poormoghim H, Mojtabavi N. MiR-27a as a diagnostic biomarker and potential therapeutic target in systemic sclerosis. Sci Rep. 2022;12(1):18932. doi:10.1038/s41598-022-23723-7
  • Wajda A, Walczyk M, Dudek E, et al. Serum microRNAs in Systemic Sclerosis, Associations with Digital Vasculopathy and Lung Involvement. Int J Mol Sci. 2022;23(18):10731. doi:10.3390/ijms231810731
  • Iannazzo F, Pellicano C, Colalillo A, et al. Interleukin-33 and soluble suppression of tumorigenicity 2 in scleroderma cardiac involvement. Clin Exp Med. 2022;23(3):897–903. doi:10.1007/s10238-022-00864-7
  • Colalillo A, Pellicano C, Rosato E. Serum-soluble ST2 and systemic sclerosis arthropathy. Clin Rheumatol. 2023;42(3):871–877. doi:10.1007/s10067-022-06367-w
  • Michalska-Jakubus M, Cutolo M, Smith V, Krasowska D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: integrated effects on microvascular reactivity. Microvasc Res. 2019;125:103881. doi:10.1016/j.mvr.2019.103881
  • Kakkar V, Assassi S, Allanore Y, et al. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol. 2022;34(6):357–364. doi:10.1097/BOR.0000000000000907
  • Ciechomska M, Skalska U. Targeting interferons as a strategy for systemic sclerosis treatment. Immunol Lett. 2018;195:45–54. doi:10.1016/j.imlet.2017.10.011
  • Londe AC, Fernandez-Ruiz R, Rogério Julio P, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: implications in Clinical Phenotypes and Treatment Response. J Rheumatol. 2023;jrheum.2022–0827.
  • Assassi S, Mayes MD, Arnett FC, et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 2010;62(2):589–598. doi:10.1002/art.27224
  • Chaudhary V, Ah Kioon MD, Hwang SM, et al. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J Exp Med. 2022;219(11):e20221085. doi:10.1084/jem.20221085
  • Höppner J, Casteleyn V, Biesen R, et al. SIGLEC-1 in Systemic Sclerosis: a Useful Biomarker for Differential Diagnosis. Pharmaceuticals. 2022;15(10):1198. doi:10.3390/ph15101198
  • Wu M, Assassi S. Dysregulation of Type 1 Interferon Signaling in Systemic Sclerosis: a Promising Therapeutic Target? Curr Treatm Opt Rheumatol. 2021;7(4):349–360. doi:10.1007/s40674-021-00188-9
  • Guo X, Higgs BW, Bay-Jensen AC, et al. Suppression of T cell activation and collagen accumulation by an anti-IFNAR1 mAb, anifrolumab, in adult patients with systemic sclerosis. J Invest Dermatol. 2015;135(10):2402–2409. doi:10.1038/jid.2015.188
  • Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res. 2021;231:139–158. doi:10.1016/j.trsl.2021.01.001
  • Wollin L, Maillet I, Quesniaux V, et al. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349(2):209–220. doi:10.1124/jpet.113.208223
  • Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–1445. doi:10.1183/09031936.00174914
  • Sato S, Shinohara S, Hayashi S, et al. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity. Respir Res. 2017;18(1):172. doi:10.1186/s12931-017-0654-2
  • Avouac J, Fürnrohr BG, Tomcik M, et al. Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum. 2011;63(3):800–809. doi:10.1002/art.30171
  • Krishna Swaroop A, Krishnan Namboori PK, Esakkimuthukumar M, et al. Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Comput Biol Med. 2023;163:107231. doi:10.1016/j.compbiomed.2023.107231
  • Sheng XR, Gao X, Schiffman C, et al. Biomarkers of fibrosis, inflammation, and extracellular matrix in the Phase 3 trial of tocilizumab in systemic sclerosis. Clin Immunol. 2023;254:109695. doi:10.1016/j.clim.2023.109695
  • Khanna D, Lin CJF, Furst DE, et al. Long-Term Safety and Efficacy of Tocilizumab in Early Systemic Sclerosis-Interstitial Lung Disease: open-Label Extension of a Phase 3 Randomized Controlled Trial. Am J Respir Crit Care Med. 2022;205(6):674–684. doi:10.1164/rccm.202103-0714OC
  • Junfei Z, Meihua G, Shuai Z, et al. Retrospective comparative study of the efficacy of JAK inhibitor (tofacitinib) in the treatment of systemic sclerosis-associated interstitial lung disease. Clin Rheumatol. 2023;42(10):2823–2832. doi:10.1007/s10067-023-06660-2
  • Moriana C, Moulinet T, Jaussaud R, Decker P. JAK inhibitors and systemic sclerosis: a systematic review of the literature. Autoimmun Rev. 2022;21(10):103168. doi:10.1016/j.autrev.2022.103168
  • Kuszmiersz P, Pacholczak-Madej R, Siwiec A, et al. Thrombin generation potential is enhanced in systemic sclerosis: impact of selected endothelial biomarkers. Clin Exp Rheumatol. 2021;39 Suppl 131(4):13–19. doi:10.55563/clinexprheumatol/d03dnc
  • Colic J, Pruner I, Damjanov N, et al. Impaired Fibrinolysis Is Linked With Digital Vasculopathy and Onset of New Digital Ulcers in Systemic Sclerosis. J Rheumatol. 2022;49(6):598–606. doi:10.3899/jrheum.210931
  • Silver RM, Wilson DA, Akter T, et al. Safety and Tolerability of Thrombin Inhibition in Scleroderma-Associated Interstitial Lung Disease. ACR Open Rheumatol. 2019;1(7):403–411. doi:10.1002/acr2.11049
  • Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: a comprehensive review. J Autoimmun. 2020;113:102510. doi:10.1016/j.jaut.2020.102510
  • Leask A. Possible strategies for anti-fibrotic drug intervention in scleroderma. J Cell Commun Signal. 2011;5(2):125–129. doi:10.1007/s12079-011-0122-6
  • Ghosh AK, Bhattacharyya S, Wei J, et al. Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J. 2009;23(9):2968–2977. doi:10.1096/fj.08-128736
  • Wei J, Ghosh AK, Sargent JL, et al. PPARγ downregulation by TGFß in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One. 2010;5(11):e13778. doi:10.1371/journal.pone.0013778
  • Lakota K, Wei J, Carns M, et al. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as biomarker? Arthritis Res Ther. 2012;14(3):R102. doi:10.1186/ar3827
  • Żółkiewicz J, Stochmal A, Zaremba M, et al. Circulating peroxisome proliferator-activated receptor γ is elevated in systemic sclerosis. Postepy Dermatol Alergol. 2020;37(6):921–926. doi:10.5114/ada.2019.84746
  • Derrett-Smith E, Clark KEN, Shiwen X, et al. The pan-PPAR agonist lanifibranor reduces development of lung fibrosis and attenuates cardiorespiratory manifestations in a transgenic mouse model of systemic sclerosis. Arthritis Res Ther. 2021;23(1):234. doi:10.1186/s13075-021-02592-x
  • Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol. 2010;161(2):241–270. doi:10.1111/j.1476-5381.2010.00815.x
  • Tokumura A, Carbone LD, Yoshioka Y, et al. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci. 2009;6(4):168–176. doi:10.7150/ijms.6.168
  • Allanore Y, Distler O, Jagerschmidt A, et al. Lysophosphatidic Acid Receptor 1 Antagonist SAR100842 for Patients With Diffuse Cutaneous Systemic Sclerosis: a Double-Blind, Randomized, Eight-Week Placebo-Controlled Study Followed by a Sixteen-Week Open-Label Extension Study. Arthritis Rheumatol. 2018;70(10):1634–1643. doi:10.1002/art.40547
  • Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci. 2020;21(13):4776. doi:10.3390/ijms21134776
  • Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: what We Know and the Potential for Intervention. Front Physiol. 2021;12:727451. doi:10.3389/fphys.2021.727451
  • Peng WJ, Yan JW, Wan YN, et al. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis. J Clin Immunol. 2012;32(6):1409–1414. doi:10.1007/s10875-012-9735-7
  • Elias GJ, Ioannis M, Theodora P, et al. Circulating tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) in systemic sclerosis patients with elevated pulmonary arterial pressure. Mediators Inflamm. 2008;2008:164134. doi:10.1155/2008/164134
  • Mazzotta C, Romano E, Bruni C, et al. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis. Arthritis Res Ther. 2015;17(1):221. doi:10.1186/s13075-015-0749-4
  • Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. Circulating Neurovascular Guidance Molecules and Their Relationship with Peripheral Microvascular Impairment in Systemic Sclerosis. Life. 2022;12(7):1056. doi:10.3390/life12071056
  • Nakamura K, Asano Y, Taniguchi T, et al. Serum levels of interleukin-18-binding protein isoform a: clinical association with inflammation and pulmonary hypertension in systemic sclerosis. J Dermatol. 2016;43(8):912–918. doi:10.1111/1346-8138.13252
  • Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: a Narrative Review. Int J Mol Sci. 2023;24(4):4097. doi:10.3390/ijms24044097
  • Kardum Ž, Milas-Ahić J, Šahinović I, Masle AM, Uršić D, Kos M. Serum levels of interleukin 17 and 22 in patients with systemic sclerosis: a single-center cross-sectional study. Rheumatol Int. 2023;43(2):345–354. doi:10.1007/s00296-022-05250-w
  • Robak E, Gerlicz-Kowalczuk Z, Dziankowska-Bartkowiak B, Wozniacka A, Bogaczewicz J. Serum concentrations of IL-17A, IL-17B, IL-17E and IL-17F in patients with systemic sclerosis. Arch Med Sci. 2019;15(3):706–712. doi:10.5114/aoms.2019.84738
  • Ikawa T, Miyagawa T, Fukui Y, et al. Association of serum CCL20 levels with pulmonary vascular involvement and primary biliary cholangitis in patients with systemic sclerosis. Int J Rheum Dis. 2021;24(5):711–718. doi:10.1111/1756-185X.14103
  • Didriksen H, Molberg Ø, Mehta A, et al. Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension. Front Immunol. 2022;13:991743. doi:10.3389/fimmu.2022.991743
  • Yanaba K, Yoshizaki A, Muroi E, et al. Serum CCL23 levels are increased in patients with systemic sclerosis. Arch Dermatol Res. 2011;303(1):29–34. doi:10.1007/s00403-010-1078-8
  • Cossu M, van Bon L, Preti C, Rossato M, Beretta L, Radstake TRDJ. Earliest Phase of Systemic Sclerosis Typified by Increased Levels of Inflammatory Proteins in the Serum. Arthritis Rheumatol. 2017;69(12):2359–2369. doi:10.1002/art.40243
  • Hasegawa M, Sato S, Echigo T, Hamaguchi Y, Yasui M, Takehara K. Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis. Ann Rheum Dis. 2005;64(1):21–28. doi:10.1136/ard.2003.018705
  • Taniguchi T, Asano Y, Akamata K, et al. Serum levels of galectin-3: possible association with fibrosis, aberrant angiogenesis, and immune activation in patients with systemic sclerosis. J Rheumatol. 2012;39(3):539–544. doi:10.3899/jrheum.110755
  • Pellicano C, Romaggioli L, Miglionico M, et al. Maresin1 is a predictive marker of new digital ulcers in systemic sclerosis patients. Microvasc Res. 2022;142:104366. doi:10.1016/j.mvr.2022.104366
  • Arakawa H, Jinnin M, Muchemwa FC, et al. Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp Dermatol. 2011;20(9):764–766. doi:10.1111/j.1600-0625.2011.01310.x
  • Stratton RJ, Pompon L, Coghlan JG, et al. Soluble thrombomodulin concentration is raised in scleroderma associated pulmonary hypertension. Ann Rheum Dis. 2000;59(2):132–134. doi:10.1136/ard.59.2.132
  • Hassan WA, Baraka EA, Elnady BM, et al. Serum Soluble CD163 and its association with various disease parameters in patients with systemic sclerosis. Eur J Rheumatol. 2016;3(3):95–100. doi:10.5152/eurjrheum.2016.15088
  • Nowaczyk J, Blicharz L, Zawistowski M, et al. The Clinical Significance of Salusins in Systemic Sclerosis-A Cross-Sectional Study. Diagnostics. 2023;13(5):848. doi:10.3390/diagnostics13050848
  • Servaas NH, Hiddingh S, Chouri E, et al. Nuclear Receptor Subfamily 4A Signaling as a Key Disease Pathway of CD1c+ Dendritic Cell Dysregulation in Systemic Sclerosis. Arthritis Rheumatol. 2023;75(2):279–292. doi:10.1002/art.42319
  • Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, et al. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci. 2023;10:1215039. doi:10.3389/fmolb.2023.1215039
  • Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med. 2020;8(3):304–320. doi:10.1016/S2213-2600(19)30480-1
  • Hoffmann-Vold AM, Allanore Y, Alves M, et al. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann Rheum Dis. 2021;80(2):219–227. doi:10.1136/annrheumdis-2020-217455
  • Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010;69(10):1809–1815. doi:10.1136/ard.2009.114264
  • Steen V. Predictors of end stage lung disease in systemic sclerosis. Ann Rheum Dis. 2003;62(2):97–99. doi:10.1136/ard.62.2.97
  • Wangkaew S, Euathrongchit J, Wattanawittawas P, Kasitanon N, Louthrenoo W. Incidence and predictors of interstitial lung disease (ILD) in Thai patients with early systemic sclerosis: inception cohort study. Mod Rheumatol. 2016;26(4):588–593. doi:10.3109/14397595.2015.1115455
  • Giacomelli R, Liakouli V, Berardicurti O, et al. Interstitial lung disease in systemic sclerosis: current and future treatment. Rheumatol Int. 2017;37(6):853–863. doi:10.1007/s00296-016-3636-7
  • Wells AU, Denton CP. Interstitial lung disease in connective tissue disease--mechanisms and management. Nat Rev Rheumatol. 2014;10(12):728–739. doi:10.1038/nrrheum.2014.149
  • Ahmed S, Handa R. Management of Connective Tissue Disease-related Interstitial Lung Disease. Curr Pulmonol Rep. 2022;11(3):86–98. doi:10.1007/s13665-022-00290-w
  • DeMizio DJ, Bernstein EJ. Detection and classification of systemic sclerosis-related interstitial lung disease: a review. Curr Opin Rheumatol. 2019;31(6):553–560. doi:10.1097/BOR.0000000000000660
  • Distler O, Assassi S, Cottin V, et al. Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur Respir J. 2020;55(5):1902026. doi:10.1183/13993003.02026-2019
  • Temiz Karadag D, Cakir O, San S, Yazici A, Ciftci E, Cefle A. Association of quantitative computed tomography indices with lung function and extent of pulmonary fibrosis in patients with systemic sclerosis. Clin Rheumatol. 2022;41(2):513–521. doi:10.1007/s10067-021-05918-x
  • Gasperini ML, Gigante A, Iacolare A, Pellicano C, Lucci S, Rosato E. The predictive role of lung ultrasound in progression of scleroderma interstitial lung disease. Clin Rheumatol. 2020;39(1):119–123. doi:10.1007/s10067-019-04686-z
  • Khanna D, Mittoo S, Aggarwal R, et al. Connective Tissue Disease-associated Interstitial Lung Diseases (CTD-ILD) - Report from OMERACT CTD-ILD Working Group. J Rheumatol. 2015;42(11):2168–2171. doi:10.3899/jrheum.141182
  • Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76(8):1327–1339. doi:10.1136/annrheumdis-2016-209909
  • Denton CP, De Lorenzis E, Roblin E, et al. Management of systemic sclerosis: British Society for Rheumatology guideline scope. Rheumatol Adv Pract. 2023;7(1):rkad022. doi:10.1093/rap/rkad022
  • Raghu G, MontesiSB, Silver RM, et al. Treatment of Systemic Sclerosis-associated Interstitial Lung Disease: Evidence-based Recommendations. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. In press 2023. doi:10.1164/rccm.202306-1113ST
  • de Vries-Bouwstra JK, Allanore Y, Matucci-Cerinic M, Balbir-Gurman A. Worldwide Expert Agreement on Updated Recommendations for the Treatment of Systemic Sclerosis. J Rheumatol. 2020;47(2):249–254. doi:10.3899/jrheum.181173
  • Hoffmann-Vold AM, Maher TM, Philpot EE, Ashrafzadeh A, Distler O. Assessment of recent evidence for the management of patients with systemic sclerosis-associated interstitial lung disease: a systematic review. ERJ Open Res. 2021;7(1):00235–2020. doi:10.1183/23120541.00235-2020
  • Furue M, Mitoma C, Mitoma H, et al. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol Res. 2017;65(4):790–797. doi:10.1007/s12026-017-8926-y
  • Petrova DT, Brandhorst G, Koch C, et al. Mycophenolic acid reverses TGF beta-induced cell motility, collagen matrix contraction and cell morphology in vitro. Cell Biochem Funct. 2015;33(7):503–508. doi:10.1002/cbf.3149
  • Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118. doi:10.1016/S0162-3109(00)00188-0
  • Denton CP, Ong VH, Xu S, et al. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann Rheum Dis. 2018;77(9):1362–1371. doi:10.1136/annrheumdis-2018-213031
  • Khanna D, Padilla C, Tsoi LC, et al. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight. 2022;7(17):e159566. doi:10.1172/jci.insight.159566
  • Numajiri H, Kuzumi A, Fukasawa T, et al. B Cell Depletion Inhibits Fibrosis via Suppression of Profibrotic Macrophage Differentiation in a Mouse Model of Systemic Sclerosis. Arthritis Rheumatol. 2021;73(11):2086–2095. doi:10.1002/art.41798
  • Acharya N, Sharma SK, Mishra D, Dhooria S, Dhir V, Jain S. Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease-a randomised controlled trial. Rheumatol Int. 2020;40(5):703–710. doi:10.1007/s00296-020-04565-w
  • Sullivan KM, Goldmuntz EA, Keyes-Elstein L, et al. Myeloablative Autologous Stem-Cell Transplantation for Severe Scleroderma. N Engl J Med. 2018;378(1):35–47. doi:10.1056/NEJMoa1703327
  • Bernstein EJ, Peterson ER, Sell JL, et al. Survival of adults with systemic sclerosis following lung transplantation: a nationwide cohort study. Arthritis Rheumatol. 2015;67(5):1314–1322. doi:10.1002/art.39021
  • Nihtyanova SI, Sari A, Harvey JC, et al. Using Autoantibodies and Cutaneous Subset to Develop Outcome-Based Disease Classification in Systemic Sclerosis. Arthritis Rheumatol. 2020;72(3):465–476. doi:10.1002/art.41153
  • Kuwana M, Gil-Vila A, Selva-O’Callaghan A. Role of autoantibodies in the diagnosis and prognosis of interstitial lung disease in autoimmune rheumatic disorders. Ther Adv Musculoskelet Dis. 2021;13:1759720X211032457. doi:10.1177/1759720X211032457
  • Geroldinger-Simić M, Bayati S, Pohjanen E, Sepp N, Nilsson P, Pin E. Autoantibodies against PIP4K2B and AKT3 Are Associated with Skin and Lung Fibrosis in Patients with Systemic Sclerosis. Int J Mol Sci. 2023;24(6):5629. doi:10.3390/ijms24065629
  • Jog NR, James JA. Biomarkers in connective tissue diseases. J Allergy Clin Immunol. 2017;140(6):1473–1483. doi:10.1016/j.jaci.2017.10.003
  • Stock CJW, Renzoni EA. Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature. Eur J Hum Genet. 2018;26(6):765–777. doi:10.1038/s41431-018-0104-8
  • Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: where do we stand? Semin Arthritis Rheum. 2020;50(3):480–491. doi:10.1016/j.semarthrit.2020.01.006
  • Fields A, Potel KN, Cabuhal R, Aziri B, Stewart ID, Schock BC. Mediators of systemic sclerosis-associated interstitial lung disease (SSc-ILD): systematic review and meta-analyses. Thorax. 2022:thoraxjnl-2022–219226. doi:10.1136/thorax-2022-219226
  • Bonhomme O, André B, Gester F, et al. Biomarkers in systemic sclerosis-associated interstitial lung disease: review of the literature. Rheumatology. 2019;58(9):1534–1546. doi:10.1093/rheumatology/kez230
  • Elhai M, Hoffmann-Vold AM, Avouac J, et al. Performance of Candidate Serum Biomarkers for Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2019;71(6):972–982. doi:10.1002/art.40815
  • Jee AS, Sahhar J, Youssef P, et al. Review: serum biomarkers in idiopathic pulmonary fibrosis and systemic sclerosis associated interstitial lung disease - frontiers and horizons. Pharmacol Ther. 2019;202:40–52. doi:10.1016/j.pharmthera.2019.05.014
  • Pietraforte I, Butera A, Gaddini L, et al. CXCL4-RNA Complexes Circulate in Systemic Sclerosis and Amplify Inflammatory/Pro-Fibrotic Responses by Myeloid Dendritic Cells. Int J Mol Sci. 2022;24(1):653. doi:10.3390/ijms24010653
  • Hoffmann-Vold AM, Fretheim H, Meier C, Maurer B. Circulating biomarkers of systemic sclerosis - interstitial lung disease. J Scleroderma Relat Disord. 2020;5(2 Suppl):41–47. doi:10.1177/2397198319894851
  • Mauer J, Chaurasia B, Goldau J, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15(5):423–430. doi:10.1038/ni.2865
  • Sanges S, Guerrier T, Duhamel A, et al. Soluble markers of B cell activation suggest a role of B cells in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension. Front Immunol. 2022;13:954007. doi:10.3389/fimmu.2022.954007
  • Ho KT, Reveille JD. The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther. 2003;5(2):80–93. doi:10.1186/ar628
  • Manetti M, Rosa I, Fioretto BS, Matucci-Cerinic M, Romano E. Decreased Serum Levels of SIRT1 and SIRT3 Correlate with Severity of Skin and Lung Fibrosis and Peripheral Microvasculopathy in Systemic Sclerosis. J Clin Med. 2022;11(5):1362. doi:10.3390/jcm11051362
  • Wu M, Baron M, Pedroza C, et al. CCL2 in the Circulation Predicts Long-Term Progression of Interstitial Lung Disease in Patients With Early Systemic Sclerosis: data From Two Independent Cohorts. Arthritis Rheumatol. 2017;69(9):1871–1878. doi:10.1002/art.40171
  • Omori I, Sumida H, Sugimori A, et al. Serum cold-inducible RNA-binding protein levels as a potential biomarker for systemic sclerosis-associated interstitial lung disease. Sci Rep. 2023;13(1):5017. doi:10.1038/s41598-023-32231-1
  • Jee AS, Stewart I, Youssef P, et al. A composite serum biomarker index for the diagnosis of systemic sclerosis interstitial lung disease: a multicentre, observational, cohort study. Arthritis Rheumatol. 2023;75(8):1424–1433. doi:10.1002/art.42491
  • Bauer Y, de Bernard S, Hickey P, et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. Eur Respir J. 2021;57(6):2002591. doi:10.1183/13993003.02591-2020
  • Huang H, Fava A, Guhr T, et al. A methodology for exploring biomarker--phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations. BMC Bioinform. 2015;16:293. doi:10.1186/s12859-015-0722-x
  • Yu L, Domsic RT, Saketkoo LA, et al. Assessment of the Systemic Sclerosis-Associated Raynaud’s Phenomenon Questionnaire: item Bank and Short-Form Development. Arthritis Care Res. 2022. doi:10.1002/acr.25038
  • Asano Y. The Pathogenesis of Systemic Sclerosis: an Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med. 2020;9(9):2687. doi:10.3390/jcm9092687
  • Sundaram SM, Chung L. An Update on Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: a Review of the Current Literature. Curr Rheumatol Rep. 2018;20(2):10. doi:10.1007/s11926-018-0709-5
  • Theodorakopoulou MP, Minopoulou I, Sarafidis P, et al. Vascular endothelial injury assessed with functional techniques in systemic sclerosis patients with pulmonary arterial hypertension versus systemic sclerosis patients without pulmonary arterial hypertension: a systematic review and meta-analysis. Rheumatol Int. 2021;41(6):1045–1053. doi:10.1007/s00296-021-04850-2
  • Pattanaik D, Brown M, Postlethwaite AE. Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res. 2011;4:105–125. doi:10.2147/JIR.S18145
  • Yaqub A, Chung L. Epidemiology and risk factors for pulmonary hypertension in systemic sclerosis. Curr Rheumatol Rep. 2013;15(1):302. doi:10.1007/s11926-012-0302-2
  • Huang WC, Hsieh SC, Wu YW, et al. 2023 Taiwan Society of Cardiology (TSOC) and Taiwan College of Rheumatology (TCR) Joint Consensus on Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Acta Cardiol Sin. 2023;39(2):213–241. doi:10.6515/ACS.202303_39(2).20230117A
  • Bruni C, De Luca G, Lazzaroni MG, et al. Screening for pulmonary arterial hypertension in systemic sclerosis: a systematic literature review. Eur J Intern Med. 2020;78:17–25. doi:10.1016/j.ejim.2020.05.042
  • Jiang Y, Turk MA, Pope JE. Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc). Autoimmun Rev. 2020;19(9):102602. doi:10.1016/j.autrev.2020.102602
  • Lewis RA, Durrington C, Condliffe R, Kiely DG. BNP/NT-proBNP in pulmonary arterial hypertension: time for point-of-care testing? Eur Respir Rev. 2020;29(156):200009. doi:10.1183/16000617.0009-2020
  • Semalulu T, Rudski L, Huynh T, et al. An evidence-based strategy to screen for pulmonary arterial hypertension in systemic sclerosis. Semin Arthritis Rheum. 2020;50(6):1421–1427. doi:10.1016/j.semarthrit.2020.02.013
  • Giuggioli D, Bruni C, Cacciapaglia F, et al. Pulmonary arterial hypertension: guidelines and unmet clinical needs. Reumatismo. 2021;72(4):228–246. doi:10.4081/reumatismo.2020.1310
  • Piera-Velazquez S, Dillon ST, Gu X, Libermann TA, Jimenez SA, Nita-Lazar A. Aptamer proteomics of serum exosomes from patients with Primary Raynaud’s and patients with Raynaud’s at risk of evolving into Systemic Sclerosis. PLoS One. 2022;17(12):e0279461. doi:10.1371/journal.pone.0279461
  • Bernero E, Sulli A, Ferrari G, et al. Prospective capillaroscopy-based study on transition from primary to secondary Raynaud’s phenomenon: preliminary results. Reumatismo. 2013;65(4):186–191. doi:10.4081/reumatismo.2013.186
  • Ruaro B, Smith V, Sulli A, et al. Innovations in the Assessment of Primary and Secondary Raynaud’s Phenomenon. Front Pharmacol. 2019;10:360. doi:10.3389/fphar.2019.00360
  • D’Alessandro R, Garcia Gonzalez E, et al. Peripheral Macrovascular Involvement in Systemic Sclerosis: a Cohort Study by Color and Spectral Doppler Ultrasonography. Life. 2023;13(2):487. doi:10.3390/life13020487
  • Belch J, Carlizza A, Carpentier PH, et al. ESVM guidelines - The diagnosis and management of Raynaud’s phenomenon. Vasa. 2017;46(6):413–423. doi:10.1024/0301-1526/a000661
  • Hickey PM, Lawrie A, Condliffe R. Circulating Protein Biomarkers in Systemic Sclerosis Related Pulmonary Arterial Hypertension: a Review of Published Data. Front Med. 2018;5:175. doi:10.3389/fmed.2018.00175
  • Moccaldi B, De Michieli L, Binda M, et al. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci. 2023;24(4):4178. doi:10.3390/ijms24044178
  • Matucci-Cerinic M, Kahaleh B, Wigley FM. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013;65(8):1953–1962. doi:10.1002/art.37988
  • Zanin-Silva DC, Santana-Gonçalves M, Kawashima-Vasconcelos MY, Oliveira MC. Management of Endothelial Dysfunction in Systemic Sclerosis: current and Developing Strategies. Front Med. 2021;8:788250. doi:10.3389/fmed.2021.788250
  • Pulito-Cueto V, Genre F, López-Mejías R, et al. Endothelin-1 as a Biomarker of Idiopathic Pulmonary Fibrosis and Interstitial Lung Disease Associated with Autoimmune Diseases. Int J Mol Sci. 2023;24(2):1275. doi:10.3390/ijms24021275
  • Manetti M, Romano E, Rosa I, et al. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis. 2017;76(5):924–934. doi:10.1136/annrheumdis-2016-210229
  • Manetti M, Guiducci S, Romano E, et al. Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis Rheum. 2013;65(1):247–257. doi:10.1002/art.37712
  • Moschetti L, Piantoni S, Vizzardi E, et al. Endothelial Dysfunction in Systemic Lupus Erythematosus and Systemic Sclerosis: a Common Trigger for Different Microvascular Diseases. Front Med. 2022;9:849086. doi:10.3389/fmed.2022.849086
  • Chora I, Guiducci S, Manetti M, et al. Vascular biomarkers and correlation with peripheral vasculopathy in systemic sclerosis. Autoimmun Rev. 2015;14(4):314–322. doi:10.1016/j.autrev.2014.12.001
  • Sha W, Thompson K, South J, et al. Loss of PPARγ expression by fibroblasts enhances dermal wound closure. Fibrogenesis Tissue Repair. 2012;5(1):5. doi:10.1186/1755-1536-5-5
  • Avouac J, Meune C, Ruiz B, et al. Angiogenic biomarkers predict the occurrence of digital ulcers in systemic sclerosis. Ann Rheum Dis. 2012;71(3):394–399. doi:10.1136/annrheumdis-2011-200143
  • Iannone F, Riccardi MT, Guiducci S, et al. Bosentan regulates the expression of adhesion molecules on circulating T cells and serum soluble adhesion molecules in systemic sclerosis-associated pulmonary arterial hypertension. Ann Rheum Dis. 2008;67(8):1121–1126. doi:10.1136/ard.2007.080424
  • Oller-Rodríguez JE, Vicens Bernabeu E, Gonzalez-Mazarío R, Grau García E, Ortiz Sanjuan FM, Román Ivorra JA. Utility of cytokines CXCL4, CXCL8 and GDF15 as biomarkers in systemic sclerosis. Med Clin (Barc). 2022;159(8):359–365. doi:10.1016/j.medcli.2021.12.006
  • Papaioannou AI, Zakynthinos E, Kostikas K, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009;9(1):18. doi:10.1186/1471-2466-9-18
  • Silva I, Almeida C, Teixeira A, Oliveira J, Vasconcelos C. Impaired angiogenesis as a feature of digital ulcers in systemic sclerosis. Clin Rheumatol. 2016;35(7):1743–1751. doi:10.1007/s10067-016-3219-8
  • Xu B, Xu G, Yu Y, Lin J. The role of TGF-β or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Res Ther. 2021;23(1):288. doi:10.1186/s13075-021-02678-6
  • Grignaschi S, Sbalchiero A, Spinozzi G, et al. Endoglin and Systemic Sclerosis: a PRISMA-driven systematic review. Front Med. 2022;9:964526. doi:10.3389/fmed.2022.964526
  • Odler B, Foris V, Gungl A, et al. Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: a Pathophysiological Approach. Front Physiol. 2018;9:587. doi:10.3389/fphys.2018.00587
  • Kawashiri SY, Ueki Y, Terada K, Yamasaki S, Aoyagi K, Kawakami A. Improvement of plasma endothelin-1 and nitric oxide in patients with systemic sclerosis by bosentan therapy. Rheumatol Int. 2014;34(2):221–225. doi:10.1007/s00296-013-2861-6
  • Wu Q, Cao F, Tao J, Li X, Zheng SG, Pan HF. Pentraxin 3: a promising therapeutic target for autoimmune diseases. Autoimmun Rev. 2020;19(12):102584. doi:10.1016/j.autrev.2020.102584
  • Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci. 2019;20(3):619. doi:10.3390/ijms20030619
  • Giannelli G, Iannone F, Marinosci F, Lapadula G, Antonaci S. The effect of bosentan on matrix metalloproteinase-9 levels in patients with systemic sclerosis-induced pulmonary hypertension. Curr Med Res Opin. 2005;21(3):327–332. doi:10.1185/030079905X30680
  • Manetti M, Guiducci S, Romano E, et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis. 2012;71(6):1064–1072. doi:10.1136/annrheumdis-2011-200837
  • Romano E, Manetti M, Rosa I, et al. Slit2/Robo4 axis may contribute to endothelial cell dysfunction and angiogenesis disturbance in systemic sclerosis. Ann Rheum Dis. 2018;77(11):1665–1674. doi:10.1136/annrheumdis-2018-213239
  • Yokoyama K, Mitoma H, Kawano S, et al. CEACAM 1, 3, 5 and 6 -positive classical monocytes correlate with interstitial lung disease in early systemic sclerosis. Front Immunol. 2022;13:1016914. doi:10.3389/fimmu.2022.1016914
  • Pellicano C, Iannazzo F, Romaggioli L, Rosato E. IL33 and sST2 serum level in systemic sclerosis microvascular involvement. Microvasc Res. 2022;142:104344. doi:10.1016/j.mvr.2022.104344
  • Kolstad KD, Khatri A, Donato M, et al. Cytokine signatures differentiate systemic sclerosis patients at high versus low risk for pulmonary arterial hypertension. Arthritis Res Ther. 2022;24(1):39. doi:10.1186/s13075-022-02734-9
  • Jiang Z, Chen C, Yang S, He H, Zhu X, Liang M. Contribution to the peripheral vasculopathy and endothelial cell dysfunction by CXCL4 in Systemic Sclerosis. J Dermatol Sci. 2021;104(1):63–73. doi:10.1016/j.jdermsci.2021.07.006
  • Ichimura Y, Asano Y, Akamata K, et al. Fli1 deficiency contributes to the suppression of endothelial CXCL5 expression in systemic sclerosis. Arch Dermatol Res. 2014;306(4):331–338. doi:10.1007/s00403-013-1431-9
  • Iannone F, Praino E, Rotondo C, et al. Body mass index and adipokines/cytokines dysregulation in systemic sclerosis. Clin Exp Immunol. 2021;206(2):153–160. doi:10.1111/cei.13651
  • Korman BD, Marangoni RG, Hinchcliff M, et al. Brief Report: association of Elevated Adipsin Levels With Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol. 2017;69(10):2062–2068. doi:10.1002/art.40193
  • Sawicka K, Michalska-Jakubus M, Potembska E, Kowal M, Pietrzak A, Krasowska D. Visfatin and chemerin levels correspond with inflammation and might reflect the bridge between metabolism, inflammation and fibrosis in patients with systemic sclerosis. Postepy Dermatol Alergol. 2019;36(5):551–565. doi:10.5114/ada.2018.79104
  • Bălănescu P, Lădaru A, Bălănescu E, Nicolau A, Băicuş C, Dan GA. IL-17, IL-6 and IFN-γ in Systemic Sclerosis Patients. Rom J Intern Med. 2015;53(1):44–49. doi:10.1515/rjim-2015-0006
  • Sun C, Zhu H, Wang Y, et al. Serum metabolite differences detected by HILIC UHPLC-Q-TOF MS in systemic sclerosis. Clin Rheumatol. 2023;42(1):125–134. doi:10.1007/s10067-022-06372-z
  • Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 2018;428:90–103. doi:10.1016/j.canlet.2018.04.016
  • Zhang Y, Qin D, Qin L, Yang X, Luo Q, Wang H. Diagnostic value of cardiac natriuretic peptide on pulmonary hypertension in systemic sclerosis: a systematic review and meta-analysis. Joint Bone Spine. 2022;89(2):105287. doi:10.1016/j.jbspin.2021.105287
  • Pagkopoulou E, Soulaidopoulos S, Katsiki N, et al. The role of asymmetric dimethylarginine in endothelial dysfunction and abnormal nitric oxide metabolism in systemic sclerosis: results from a pilot study. Clin Rheumatol. 2023;42(4):1077–1085. doi:10.1007/s10067-022-06472-w
  • Pagkopoulou E, Soulaidopoulos S, Triantafyllidou E, et al. Asymmetric dimethylarginine correlates with worsening peripheral microangiopathy in systemic sclerosis. Microvasc Res. 2023;145:104448. doi:10.1016/j.mvr.2022.104448
  • Xanthouli P, Gordjani O, Benjamin N, et al. Hypochromic red cells as a prognostic indicator of survival among patients with systemic sclerosis screened for pulmonary hypertension. Arthritis Res Ther. 2023;25(1):38. doi:10.1186/s13075-023-03020-y
  • Chikhoune L, Brousseau T, Morell-Dubois S, et al. Association between Routine Laboratory Parameters and the Severity and Progression of Systemic Sclerosis. J Clin Med. 2022;11(17):5087. doi:10.3390/jcm11175087
  • Kayser C, Fritzler MJ. Autoantibodies in systemic sclerosis: unanswered questions. Front Immunol. 2015;6:167. doi:10.3389/fimmu.2015.00167
  • Lomelí-Nieto JA, Muñoz-Valle JF, Baños-Hernández CJ, et al. Transforming growth factor beta isoforms and TGF-βR1 and TGF-βR2 expression in systemic sclerosis patients. Clin Exp Med. 2022;23(2):471–481. doi:10.1007/s10238-022-00841-0
  • Isomura Y, Shirai Y, Kuwana M. Clinical worsening following discontinuation of tocilizumab in diffuse cutaneous systemic sclerosis: a single-centre experience in Japan. Rheumatology. 2022;61(11):4491–4496. doi:10.1093/rheumatology/keac136
  • Lescoat A, Roofeh D, Kuwana M, et al. Therapeutic Approaches to Systemic Sclerosis: recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol. 2023;64(3):239–261. doi:10.1007/s12016-021-08891-0
  • Stifano G, Sornasse T, Rice LM, et al. Skin Gene Expression Is Prognostic for the Trajectory of Skin Disease in Patients With Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol. 2018;70(6):912–919. doi:10.1002/art.40455
  • Clark KEN, Csomor E, Campochiaro C, et al. Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study. Lancet Rheumatol. 2022;4(7):e507–e516. doi:10.1016/S2665-9913(22)00094-7
  • Gordon JK, Martyanov V, Franks JM, et al. Belimumab for the Treatment of Early Diffuse Systemic Sclerosis: results of a Randomized, Double-Blind, Placebo-Controlled, Pilot Trial. Arthritis Rheumatol. 2018;70(2):308–316. doi:10.1002/art.40358
  • Wirz EG, Jaeger VK, Allanore Y, et al. Incidence and predictors of cutaneous manifestations during the early course of systemic sclerosis: a 10-year longitudinal study from the EUSTAR database. Ann Rheum Dis. 2016;75(7):1285–1292. doi:10.1136/annrheumdis-2015-207271
  • Kuwana M, Allanore Y, Denton CP, et al. Nintedanib in Patients With Systemic Sclerosis-Associated Interstitial Lung Disease: subgroup Analyses by Autoantibody Status and Modified Rodnan Skin Thickness Score. Arthritis Rheumatol. 2022;74(3):518–526. doi:10.1002/art.41965
  • Namas R, Tashkin DP, Furst DE, et al. Efficacy of Mycophenolate Mofetil and Oral Cyclophosphamide on Skin Thickness: post Hoc Analyses From Two Randomized Placebo-Controlled Trials. Arthritis Care Res. 2018;70(3):439–444. doi:10.1002/acr.23282
  • Johnson SR, Feldman BM, Pope JE, Tomlinson GA. Shifting our thinking about uncommon disease trials: the case of methotrexate in scleroderma. J Rheumatol. 2009;36(2):323–329. doi:10.3899/jrheum.071169
  • Roden AC, Camus P. Iatrogenic pulmonary lesions. Semin Diagn Pathol. 2018;35(4):260–271. doi:10.1053/j.semdp.2018.03.002
  • Karalilova RV, Batalov ZA, Sapundzhieva TL, Matucci-Cerinic M, Batalov AZ. Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol Int. 2021;41(10):1743–1753. doi:10.1007/s00296-021-04956-7
  • Khanna D, Denton CP, Furst DE, et al. A 24-Week, Phase IIa, Randomized, Double-blind, Placebo-controlled Study of Ziritaxestat in Early Diffuse Cutaneous Systemic Sclerosis (NOVESA). Arthritis Rheumatol. 2023. doi:10.1002/art.42477
  • Kuzumi A, Ebata S, Fukasawa T, et al. Long-term Outcomes After Rituximab Treatment for Patients With Systemic Sclerosis: follow-up of the DESIRES Trial With a Focus on Serum Immunoglobulin Levels. JAMA Dermatol. 2023;159(4):374–383. doi:10.1001/jamadermatol.2022.6340
  • Ebata S, Oba K, Kashiwabara K, et al. Predictors of rituximab effect on modified Rodnan skin score in systemic sclerosis: a machine-learning analysis of the DesiReS trial. Rheumatology. 2022;61(11):4364–4373. doi:10.1093/rheumatology/keac023
  • Frech TM, Frech M, Saknite I, et al. Novel therapies and innovation for systemic sclerosis skin ulceration. Best Pract Res Clin Rheumatol. 2023;4:101813. doi:10.1016/j.berh.2022.101813
  • Davuluri S, Lood C, Chung L. Calcinosis in systemic sclerosis. Curr Opin Rheumatol. 2022;34(6):319–327. doi:10.1097/BOR.0000000000000896
  • Touart DM, Sau P. Cutaneous deposition diseases. Part I. J Am Acad Dermatol. 1998;39(2 Pt 1):149–171. doi:10.1016/S0190-9622(98)70069-6
  • Herrick AL. Raynaud’s phenomenon and digital ulcers: advances in evaluation and management. Curr Opin Rheumatol. 2021;33(6):453–462. doi:10.1097/BOR.0000000000000826
  • Flavahan NA. New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol. 2021;33(6):471–479. doi:10.1097/BOR.0000000000000830
  • Volkmann ER, McMahan Z. Gastrointestinal involvement in systemic sclerosis: pathogenesis, assessment and treatment. Curr Opin Rheumatol. 2022;34(6):328–336. doi:10.1097/BOR.0000000000000899
  • Khanna D, Hays RD, Maranian P, et al. Reliability and validity of the University of California, Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument. Arthritis Rheum. 2009;61(9):1257–1263. doi:10.1002/art.24730
  • Lafyatis R, Valenzi E. Assessment of disease outcome measures in systemic sclerosis. Nat Rev Rheumatol. 2022;18(9):527–541. doi:10.1038/s41584-022-00803-6
  • Hamberg V, Wallman JK, Mogard E, Lindqvist E, Olofsson T, Andréasson K. Elevated fecal levels of the inflammatory biomarker calprotectin in early systemic sclerosis. Rheumatol Int. 2023;43(5):961–967. doi:10.1007/s00296-022-05264-4
  • Ebrahimi B, Nazarinia M, Molayem M. Calprotectin, an available prognostic biomarker in systemic sclerosis: a systematic review. Clin Rheumatol. 2021;40(5):1709–1715. doi:10.1007/s10067-020-05446-0
  • Cole A, Ong VH, Denton CP. Renal Disease and Systemic Sclerosis: an Update on Scleroderma Renal Crisis. Clin Rev Allergy Immunol. 2023;64(3):378–391. doi:10.1007/s12016-022-08945-x
  • Clark KE. Review of systemic sclerosis and antineutrophil cytoplasmic antibody vasculitis overlap: using autoantibodies for a personalised medicine approach. J Scleroderma Relat Disord. 2023;8(1):7–13. doi:10.1177/23971983221126850
  • Chew E, Barnado A, Ikizler TA, Zent R, Frech T. Evaluation of hypertension in systemic sclerosis and systemic lupus erythematosus overlap. J Scleroderma Relat Disord. 2023;8(1):14–19. doi:10.1177/23971983221122673
  • Bose N, Chiesa-Vottero A, Chatterjee S. Scleroderma renal crisis. Semin Arthritis Rheum. 2015;44(6):687–694. doi:10.1016/j.semarthrit.2014.12.001
  • Denton CP, Sweny P, Abdulla A, Black CM. Acute renal failure occurring in scleroderma treated with cyclosporin A: a report of three cases. Br J Rheumatol. 1994;33(1):90–92. doi:10.1093/rheumatology/33.1.90
  • Tonsawan P, Talabthong K, Puapairoj A, Foocharoen C. Renal pathology and clinical associations in systemic sclerosis: a historical cohort study. Int J Gen Med. 2019;12:323–331. doi:10.2147/IJGM.S221471
  • Hudson M, Baron M, Tatibouet S, Furst DE, Khanna D. International Scleroderma Renal Crisis Study Investigators. Exposure to ACE inhibitors prior to the onset of scleroderma renal crisis-results from the International Scleroderma Renal Crisis Survey. Semin Arthritis Rheum. 2014;43(5):666–672. doi:10.1016/j.semarthrit.2013.09.008
  • Steen VD, Mayes MD, Merkel PA. Assessment of kidney involvement. Clin Exp Rheumatol. 2003;21(3 Suppl 29):S29–31.
  • Berger M, Steen VD. Role of anti-receptor autoantibodies in pathophysiology of scleroderma. Autoimmun Rev. 2017;16(10):1029–1035. doi:10.1016/j.autrev.2017.07.019
  • Nagaraja V. Management of scleroderma renal crisis. Curr Opin Rheumatol. 2019;31(3):223–230. doi:10.1097/BOR.0000000000000604
  • Hoa S, Stern EP, Denton CP, Hudson M; Scleroderma Clinical Trials Consortium Scleroderma Renal Crisis Working Group Investigators of the Scleroderma Clinical Trials Consortium Scleroderma Renal Crisis Working Group. Towards developing criteria for scleroderma renal crisis: a scoping review. Autoimmun Rev. 2017;16(4):407–415. doi:10.1016/j.autrev.2017.02.012
  • Okrój M, Johansson M, Saxne T, Blom AM, Hesselstrand R. Analysis of complement biomarkers in systemic sclerosis indicates a distinct pattern in scleroderma renal crisis. Arthritis Res Ther. 2016;18(1):267. doi:10.1186/s13075-016-1168-x
  • Osthoff M, Jaeger VK, Heijnen IAFM, et al. Role of lectin pathway complement proteins and genetic variants in organ damage and disease severity of systemic sclerosis: a cross-sectional study. Arthritis Res Ther. 2019;21(1):76. doi:10.1186/s13075-019-1859-1
  • Shimizu K, Ogawa F, Yoshizaki A, et al. Increased serum levels of soluble CD163 in patients with scleroderma. Clin Rheumatol. 2012;31(7):1059–1064. doi:10.1007/s10067-012-1972-x
  • Yanaba K, Asano Y, Tada Y, et al. Increased serum soluble CD147 levels in patients with systemic sclerosis: association with scleroderma renal crisis. Clin Rheumatol. 2012;31(5):835–839. doi:10.1007/s10067-012-1949-9
  • Fonseca C, Renzoni E, Sestini P, et al. Endothelin axis polymorphisms in patients with scleroderma. Arthritis Rheum. 2006;54(9):3034–3042. doi:10.1002/art.22036
  • Penn H, Quillinan N, Khan K, et al. Targeting the endothelin axis in scleroderma renal crisis: rationale and feasibility. QJM. 2013;106(9):839–848. doi:10.1093/qjmed/hct111
  • Stratton RJ, Coghlan JG, Pearson JD, et al. Different patterns of endothelial cell activation in renal and pulmonary vascular disease in scleroderma. QJM. 1998;91(8):561–566. doi:10.1093/qjmed/91.8.561
  • Chighizola CB, Pregnolato F, Meroni PL, Denton CP, Ong VH. N-terminal pro Brain Natriuretic Peptide as predictor of outcome in scleroderma renal crisis. Clin Exp Rheumatol. 2016;34 Suppl 100(5):122–128.
  • Penn H, Howie AJ, Kingdon EJ, et al. Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM. 2007;100(8):485–494. doi:10.1093/qjmed/hcm052
  • Tormey VJ, Bunn CC, Denton CP, Black CM. Anti-fibrillarin antibodies in systemic sclerosis. Rheumatology. 2001;40(10):1157–1162. doi:10.1093/rheumatology/40.10.1157
  • Codullo V, Cavazzana I, Bonino C, et al. Serologic profile and mortality rates of scleroderma renal crisis in Italy. J Rheumatol. 2009;36(7):1464–1469. doi:10.3899/jrheum.080806
  • Merashli M, Alves J, Ames PRJ. Clinical relevance of antiphospholipid antibodies in systemic sclerosis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2017;46(5):615–624. doi:10.1016/j.semarthrit.2016.10.004
  • Ogawa F, Shimizu K, Hara T, et al. Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res. 2010;302(1):27–35. doi:10.1007/s00403-009-0996-9
  • Clements PJ, Lachenbruch PA, Furst DE, Maxwell M, Danovitch G, Paulus HE. Abnormalities of renal physiology in systemic sclerosis. A prospective study with 10-year followup. Arthritis Rheum. 1994;37(1):67–74. doi:10.1002/art.1780370110
  • Gigante A, Barbano B, Barilaro G, et al. Serum uric acid as a marker of microvascular damage in systemic sclerosis patients. Microvasc Res. 2016;106:39–43. doi:10.1016/j.mvr.2016.03.007
  • Reiseter S, Molberg Ø, Gunnarsson R, et al. Associations between circulating endostatin levels and vascular organ damage in systemic sclerosis and mixed connective tissue disease: an observational study. Arthritis Res Ther. 2015;17(1):231. doi:10.1186/s13075-015-0756-5
  • Akamata K, Asano Y, Taniguchi T, et al. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology. 2015;54(7):1308–1316. doi:10.1093/rheumatology/keu479
  • Takahashi T, Asano Y, Noda S, et al. A possible contribution of lipocalin-2 to the development of dermal fibrosis, pulmonary vascular involvement and renal dysfunction in systemic sclerosis. Br J Dermatol. 2015;173(3):681–689. doi:10.1111/bjd.13779
  • Aozasa N, Asano Y, Akamata K, et al. Serum apelin levels: clinical association with vascular involvements in patients with systemic sclerosis. J Eur Acad Dermatol Venereol. 2013;27(1):37–42. doi:10.1111/j.1468-3083.2011.04354.x
  • Pawlik KK, Bohdziewicz A, Chrabąszcz M, et al. Biomarkers of disease activity in systemic sclerosis. Wiad Lek. 2020;73(10):2300–2305. doi:10.36740/WLek202010137
  • Akamata K, Asano Y, Noda S, et al. An inverse correlation of serum angiogenin levels with estimated glomerular filtration rate in systemic sclerosis patients with renal dysfunction. Eur J Dermatol. 2013;23(2):269–270. doi:10.1684/ejd.2013.1924
  • Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res. 2019;311(4):251–263. doi:10.1007/s00403-019-01893-1
  • Stern EP, Unwin R, Burns A, Ong VH, Denton CP. Exploring molecular pathology of chronic kidney disease in systemic sclerosis by analysis of urinary and serum proteins. Rheumatol Adv Pract. 2021;5(1):rkaa083. doi:10.1093/rap/rkaa083