115
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of Fipronil Exposure on Hematological Aspects of Rhesus Monkeys (Macaca mulatta): Risk and Toxicity Assessment in Agro-Workers

ORCID Icon, ORCID Icon &
Pages 5755-5765 | Received 03 Sep 2022, Accepted 05 Sep 2023, Published online: 28 Dec 2023

References

  • Zaller JG, Zaller JG. What is the Problem? Pesticides in Our Everyday Life. Daily Poison: Pesticides-an Underestimated Danger; 2020:1–125.
  • Horrigan L, Lawrence RS, Walker P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect. 2002;110(5):445–456. doi:10.1289/ehp.02110445
  • García-García CR, Parrón T, Requena M, et al. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016;145:274–283. doi:10.1016/j.lfs.2015.10.013
  • Rohlman DS, Ismail A, Bonner MR, et al. Occupational pesticide exposure and symptoms of attention deficit hyperactivity disorder in adolescent pesticide applicators in Egypt. Neurotoxicology. 2019;74:1–6. doi:10.1016/j.neuro.2019.05.002
  • Roberts DM, Aaron CK. Management of acute organophosphorus pesticide poisoning. BMJ. 2007;334(7594):629–634. doi:10.1136/bmj.39134.566979.BE
  • Thundiyil JG, Stober J, Besbelli N, Pronczuk J. Acute pesticide poisoning: a proposed classification tool. Bull World Health Organ. 2008;86:205–209. doi:10.2471/BLT.08.041814
  • Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P. Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. Bioscience. 2001;51(3):209–217.
  • Hayes T, Falso P, Gallipeau S, et al. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol. 2010;213(6):921–933. doi:10.1242/jeb.040865
  • Tuomainen U, Candolin U. Behavioural responses to human‐induced environmental change. Biol Rev. 2011;86(3):640–657. doi:10.1111/j.1469-185X.2010.00164.x
  • Jansen M, Stoks R, Coors A, et al. Collateral damage: rapid exposure‐induced evolution of pesticide resistance leads to increased susceptibility to parasites. Evolution. 2011;65(9):2681–2691. doi:10.1111/j.1558-5646.2011.01331.x
  • Khan M, Damalas CA. Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. Int J Pest Manag. 2015;61(1):9–16. doi:10.1080/09670874.2014.984257
  • Zhao X, Yeh JZ, Salgado VL, et al. Sulfone metabolite of fipronil blocks γ-aminobutyric acid-and glutamate-activated chloride channels in mammalian and insect neurons. J Pharmacol Exp Ther. 2005;314(1):363–373. doi:10.1124/jpet.104.077891
  • Wright I. Fipronil: a microcosm of flea control? UK Vet Companion Anim. 2013;18(4):139–141. doi:10.12968/coan.2013.18.4.139
  • Gunasekara AS, Truong T, Goh KS, et al. Environmental fate and toxicology of fipronil. J Pestic Sci. 2007;32(3):189–199. doi:10.1584/jpestics.R07-02
  • Brennan AA, Harwood AD, You J, et al. Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations. Chemosphere. 2009;77(1):22–28. doi:10.1016/j.chemosphere.2009.06.019
  • Tian Y, Zhang X, Huang Y, et al. Amphiphilic prodrug nano-micelles of fipronil coupled with natural carboxylic acids for improving physicochemical properties and reducing the toxicities to aquatic organisms. Chem Eng J. 2022;439:135717. doi:10.1016/j.cej.2022.135717
  • Gibbons D, Morrissey C, Mineau P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res. 2015;22(1):103–118. doi:10.1007/s11356-014-3180-5
  • Qu H, Ma R-X, Liu D-H, et al. The toxicity, bioaccumulation, elimination, conversion of the enantiomers of fipronil in Anodonta woodiana. J Hazard Mater. 2016;312:169–174. doi:10.1016/j.jhazmat.2016.03.063
  • Qureshi IZ, Bibi A, Shahid S, et al. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol. 2016;179:103–114. doi:10.1016/j.aquatox.2016.08.012
  • Martonen T, Katz I, Musante C. A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal Toxicol. 2001;13(4):307–356. doi:10.1080/089583701750127412
  • Jennings M, Prescott MJ, Refinement JWGO. Refinements in husbandry, care and common procedures for non-human primates: ninth report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim. 2009;43(1_suppl):1–47. doi:10.1258/la.2008.007143
  • Yang Y, Shi Y, Chen D, et al. Bisphenol A and its analogues in paired urine and house dust from South China and implications for children’s exposure. Chemosphere. 2022;294:133701. doi:10.1016/j.chemosphere.2022.133701
  • Gad MF, Mossa A-TH, Refaie AA, et al. Benchmark dose and the adverse effects of exposure to pendimethalin at low dose in female rats. Basic Clin Pharmacol Toxicol. 2022;130(2):301–319. doi:10.1111/bcpt.13683
  • Akter S, Shekhar HU, Akhteruzzaman S. Application of biochemical tests and machine learning techniques to diagnose and evaluate liver disease. Adv Biosci Biotechnol. 2021;12(6):154–172. doi:10.4236/abb.2021.126011
  • Kamada Y, Hashimoto R, Yamamori H, et al. Impact of plasma transaminase levels on the peripheral blood glutamate levels and memory functions in healthy subjects. BBA Clin. 2016;5:101–107. doi:10.1016/j.bbacli.2016.02.004
  • Lala V, Goyal A, Minter DA. Liver function tests. In: StatPearls [Internet]. StatPearls Publishing; 2021.
  • McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016;15:817. doi:10.17179/excli2016-800
  • Lameire N, Hoste E. Reflections on the definition, classification, and diagnostic evaluation of acute renal failure. Curr Opin Crit Care. 2004;10(6):468–475. doi:10.1097/01.ccx.0000144939.24897.71
  • Luan D, Liu A, Wang X, et al. Robust two-stage location allocation for emergency temporary blood supply in postdisaster. Discrete Dyn Nat Soc. 2022;2022:1–20. doi:10.1155/2022/6184170
  • Mossa A-TH, Swelam ES, Mohafrash SM. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicol Rep. 2015;2:775–784. doi:10.1016/j.toxrep.2015.02.009
  • Ardeshir RA, Zolgharnein H, Movahedinia A, et al. Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicol Rep. 2017;4:348–357. doi:10.1016/j.toxrep.2017.06.010
  • Fazio F. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture. 2019;500:237–242. doi:10.1016/j.aquaculture.2018.10.030
  • SuiX Z. RSL3drivesferroptosisthrough GPX4inactivationandROSproductionincolorectalcancer. FrontPharmacol. 2018;9:1371.
  • Seth N, Saxena K. Hematological responses in a freshwater fish Channa punctatus due to fenvalerate. Bull Environ Contam Toxicol. 2003;71:1192–1199. doi:10.1007/s00128-003-8732-1
  • Saravanan M, Kumar KP, Ramesh M. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: cypriniformes) during acute and chronic sublethal exposure to lindane. Pestic Biochem Physiol. 2011;100(3):206–211. doi:10.1016/j.pestbp.2011.04.002
  • El-Murr A, Hakim Y TSI, Ghonimi WA, et al. Histopathological, immunological, hematological and biochemical effects of fipronil on Nile tilapia (Oreochromis niloticus). J Vet Sci Technol. 2015;6(5):2–9. doi:10.4172/2157-7579.1000252
  • Ali F, Khan MQ, Anjum MZ, Khattak I. Toxic effect of atrazine herbicide on the hematological indices of snow carp (Schizothorax plagiostomus): an indigenous fish species of economic importance. Fresenius Environ Bull. 2018;27:3075–3080.
  • Gupta SK, Pal AK, Sahu NP, et al. Dietary microbial levan ameliorates stress and augments immunity in Cyprinus carpio fry (Linnaeus, 1758) exposed to sublethal toxicity of fipronil. Aquac Res. 2014;45(5):893–906. doi:10.1111/are.12030
  • Saravanan M, Devi KU, Malarvizhi A, et al. Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol. 2012;34(1):14–22. doi:10.1016/j.etap.2012.02.005
  • Davis KB, McEntire M. Comparison of the cortisol and glucose stress response to acute confinement among white bass, Morone chrysops, striped bass, Morone saxatilis and sunshine bass, Morone chrysops x Morone saxatilis; 2009.
  • Fırat Ö, Cogun HY, Yüzereroğlu TA, et al. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem. 2011;37(3):657–666. doi:10.1007/s10695-011-9466-3