327
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anti-Inflammatory and Antioxidant Effects of Liposoluble C60 at the Cellular, Molecular, and Whole-Animal Levels

, , , & ORCID Icon
Pages 83-93 | Received 18 Aug 2022, Accepted 16 Dec 2022, Published online: 07 Jan 2023

References

  • Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature. 1985;318:162–163. doi:10.1038/318162a0
  • Diederich F, Ettl R, Rubin Y, et al. The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science. 1991;252:548–551. doi:10.1126/science.252.5005.548
  • Palit DK, Sapre AV, Mittal JP, et al. Photophysical properties of the fullerenes, C60 and C70. Chem Phys Lett. 1992;195:1–6. doi:10.1016/0009-2614(92)85900-U
  • Kato S, Kikuchi R, Aoshima H, et al. Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60. J Photochem Photobiol B. 2010;98:144–151. doi:10.1016/j.jphotobiol.2009.11.015
  • Kato S, Aoshima H, Saitoh Y, et al. Fullerene-C60/liposome complex: defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue. J Photochem Photobiol B. 2010;98:99–105. doi:10.1016/j.jphotobiol.2009.11.010
  • Galvan YP, Alperovich I, Zolotukhin P, et al. Fullerenes as anti-aging antioxidants. Current Aging Sci. 2017;10(1):56–67. doi:10.2174/1874609809666160921120008
  • Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;13(3):1071–1087. doi:10.1016/j.nano.2016.10.002
  • Inui S, Mori A, Ito M, et al. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin. J Nanobiotechnology. 2014;12:6. doi:10.1186/1477-3155-12-6
  • Dellinger A, Zhou Z, Lenk R, et al. Fullerene nanomaterials inhibit phorbol myristate acetate–induced inflammation. Exp Dermatol. 2009;18:1079–1081. doi:10.1111/j.1600-0625.2009.00904.x
  • Inui S, Aoshima H, Nishiyama A, et al. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine. 2011;7:238–241. doi:10.1016/j.nano.2010.09.005
  • Ryan JJ, Bateman HR, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179(1):665–672. doi:10.4049/jimmunol.179.1.665
  • Kopova I, Lavrentiev V, Vacik J, et al. Growth and potential damage of human bone-derived cells on fresh and aged fullerene C60 films. Int J Mol Sci. 2013;14(5):9182–9204. doi:10.3390/ijms14059182
  • Baati T, Bourasset T, Gharbi T, et al. The prolongation of the lifespan of rats by repeated oral administrtion of fullerene. Biomaterials. 2012;33(19):4936–4946. doi:10.1016/j.biomaterials.2012.03.036
  • Keykhosravi S, Rietveld IB, Couto B, Tmarit JL. [60] Fullerene for medical purposes, A purity criterion towards regulatory considerations. Materials. 2019;12(16):2571. doi:10.3390/ma12162571
  • Fromen CA, Kelley WJ, Fish MB, et al. Neutrophil–particle interactions in blood circulation drive particle clearance and alter neutrophil responses in acute inflammation. ACS Nano. 2017;11(11):10797–10807. doi:10.1021/acsnano.7b03190
  • Saito E, Kuo R, Pearson RM, et al. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release. 2019;300:185–196. doi:10.1016/j.jconrel.2019.02.025
  • Larysa LM, Prylutska SV, Rudyk MP, et al. C60 Fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes. Cancer Nano. 2018;9(1):8. doi:10.1186/s12645-017-0034-0
  • Dellinger AL, Zhou ZG, Kepley CL. A steroid-mimicking nanomaterial that mediates inhibition of human lung mast cell responses. Nanomedicine. 2014;10(6):1185–1193. doi:10.1016/j.nano.2014.02.006
  • Xinrong LI. A novel application of Carbon-60 and its activity assays. Patent application number:202010169138.X; 2020.
  • Jaganjac M, Cipak A, Schaur RJ, et al. Pathophysiology of neutrophil-mediated extracellular redox reactions. Front Biosci. 2016;21:839–855. doi:10.2741/4423
  • Marzano AV, Borghi A, Wallach D, et al. A comprehensive review of neutrophilic diseases. Clin Rev Allergy Immunol. 2018;54(1):114–130. doi:10.1007/s12016-017-8621-8
  • Shershakova N, Baraboshkina E, Andreev S, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology. 2016;14:8. doi:10.1186/s12951-016-0159-z
  • Tzeng SF, Lee JL, Kuo JS, et al. Effects of malonate C60 derivatives on activated microglia. Brain Res. 2002;940(1–2):61–68. doi:10.1016/S0006-8993(02)02592-1
  • Saisavoey T, Sangtanoo P, Reamtong O, et al. Antioxidant and anti-inflammatory effects of defatted rice bran (oryza sativa l.) protein hydrolysates on raw 264.7 macrophage cells. J Food Biochem. 2016;40(6):731–740. doi:10.1111/jfbc.12266
  • Song MY, Liu SF, Yin JF, et al. Interaction of human serum album and C60 aggregates in solution. Int J Mol Sci. 2011;12(8):4964–4974. doi:10.3390/ijms12084964
  • Fu XF, Fang YL, Zhao HL, et al. Size-dependent binding of pristine fullerene (nC60) nanoparticles to bovine/human serum albumin. J Mol Struct. 2018;1166:442–447. doi:10.1016/j.molstruc.2018.04.067
  • Liu QH, Jin L, Mahon BH, et al. Novel treatment of neuroinflammation against low back pain by soluble fullerol nanoparticles. Spine. 2013;38(17):1443–1451. doi:10.1097/BRS.0b013e31828fc6b7
  • Sastre J, Mannelli I, Reigada R. Effects of fullerene on lipid bilayers displaying different liquid ordering: acoarse-grained molecular dynamics study. Biochim Biophys Acta Gen Subj. 2017;1861(11 Pt A):2872–2882. doi:10.1016/j.bbagen.2017.08.004
  • Ha Y, Katz LE, Liljestrand HM. Distribution of fullerene nanoparticles between water and solid supported lipid membranes: thermodynamics and effects of membrane composition on distribution. Environ Sci Technol. 2015;49(24):14546–14553. doi:10.1021/acs.est.5b03339
  • Ikeda A, Kiguchi K, Shigematsu T, Nobusawa K, Kikuchi J-I, Akiyama M. Location of [60] fullerene incorporation in lipid membranes. Chem Commun. 2011;47(44):12095–12097. doi:10.1039/c1cc14650e
  • Dellinger A, Zhou ZG, Norton SK, Lenk R, Conrad D, Kepley CL. Uptake and distribution of fullerenes in human mast cells. Nanomedicine. 2010;6(4):575–582. doi:10.1016/j.nano.2010.01.008
  • Russ KA, Elvati P, Parsonage TL, et al. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale. 2016;8(7):134–4144. doi:10.1039/C5NR07003A
  • Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805–1812. doi:10.1172/JCI200318921
  • Lau DC, Dhillon B, Yan H, et al. Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol. 2005;288(5):2031–2041. doi:10.1152/ajpheart.01058.2004
  • Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–334. doi:10.1001/jama.286.3.327
  • Dehghan A, Kardys I, de Maat MP, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56(3):872–878. doi:10.2337/db06-0922
  • Clearfield MB. C-reactive protein: a new risk assessment tool for cardiovascular disease. J Am Osteopath Assoc. 2005;105(9):409–416.
  • Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–321.
  • Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol. 2018;233(11):8508–8525. doi:10.1002/jcp.26791