199
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

WKYMVm Works by Targeting Immune Cells

ORCID Icon, , , , &
Pages 45-55 | Received 21 Sep 2022, Accepted 24 Dec 2022, Published online: 06 Jan 2023

References

  • Ye RD, Boulay F, Wang JM, et al. International union of basic and clinical pharmacology. LXXIII. nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009;61(2):119–161. doi:10.1124/pr.109.001578
  • Gao JL, Chen H, Filie JD, Kozak CA, Murphy PM. Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse. Genomics. 1998;51(2):270–276. doi:10.1006/geno.1998.5376
  • Rotrosen D, Malech HL, Gallin JI. Formyl peptide leukocyte chemoattractant uptake and release by cultured human umbilical vein endothelial cells. J Immunol. 1987;139(9):3034–3040.
  • Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR. Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol. 1995;61(1):71–78. doi:10.1016/0165-5728(95)00075-d
  • McCoy R, Haviland DL, Molmenti EP, Ziambaras T, Wetsel RA, Perlmutter DH. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J Exp Med. 1995;182(1):207–217. doi:10.1084/jem.182.1.207
  • Hou XL, Ji CD, Tang J, et al. FPR2 promotes invasion and metastasis of gastric cancer cells and predicts the prognosis of patients. Sci Rep. 2017;7(1):3153. doi:10.1038/s41598-017-03368-7
  • Crocetti L, Vergelli C, Guerrini G, et al. Novel formyl peptide receptor (FPR) agonists with pyridinone and pyrimidindione scaffolds that are potentially useful for the treatment of rheumatoid arthritis. Bioorg Chem. 2020;100:103880. doi:10.1016/j.bioorg.2020.103880
  • Kim SD, Kim JM, Jo SH, et al. Functional expression of formyl peptide receptor family in human NK cells. J Immunol. 2009;183(9):5511–5517. doi:10.4049/jimmunol.0802986
  • Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J Immunol. 2001;166(6):4092–4098. doi:10.4049/jimmunol.166.6.4092
  • Yang D, Chen Q, Gertz B, et al. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J Leukoc Biol. 2002;72(3):598–607. doi:10.1189/jlb.72.3.598
  • Migeotte I, Riboldi E, Franssen JD, et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med. 2005;201(1):83–93. doi:10.1084/jem.20041277
  • Rabiet MJ, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol. 2005;35(8):2486–2495. doi:10.1002/eji.200526338
  • Baek SH, Seo JK, Chae CB, Suh PG, Ryu SH. Identification of the peptides that stimulate the phosphoinositide hydrolysis in lymphocyte cell lines from peptide libraries. J Biol Chem. 1996;271(14):8170–8175. doi:10.1074/jbc.271.14.8170
  • Le Y, Gong W, Li B, et al. Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol. 1999;163(12):6777–6784.
  • Christophe T, Karlsson A, Dugave C, Rabiet MJ, Boulay F, Dahlgren C. The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J Biol Chem. 2001;276(24):21585–21593. doi:10.1074/jbc.M007769200
  • Kim SD, Kim YK, Lee HY, et al. The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol. 2010;185(7):4302–4310. doi:10.4049/jimmunol.1001310
  • Horewicz VV, Crestani S, de Sordi R, Rezende E, Assreuy J. FPR2/ALX activation reverses LPS-induced vascular hyporeactivity in aorta and increases survival in a pneumosepsis model. Eur J Pharmacol. 2015;746:267–273. doi:10.1016/j.ejphar.2014.11.026
  • Kim YE, Park WS, Ahn SY, et al. WKYMVm hexapeptide, a strong formyl peptide receptor 2 agonist, attenuates hyperoxia-induced lung injuries in newborn mice. Sci Rep. 2019;9(1):6815. doi:10.1038/s41598-019-43321-4
  • Lee H, Lee J, Park Y, Kim JH, Eickelberg O, Yang SR. WKYMVm ameliorates acute lung injury via neutrophil antimicrobial peptide derived STAT1/IRF1 pathway. Biochem Biophys Res Commun. 2020;533(3):313–318. doi:10.1016/j.bbrc.2020.09.036
  • Kim H, Park JH, Lee EH, et al. Granulocyte function is stimulated by a novel hexapeptide, WKYMVm, in chemotherapy-treated cancer patients. Exp Hematol. 2006;34(4):407–413. doi:10.1016/j.exphem.2006.01.010
  • Kim SD, Lee HY, Shim JW, et al. A WKYMVm-containing combination elicits potent anti-tumor activity in heterotopic cancer animal model. PLoS One. 2012;7(1):e30522. doi:10.1371/journal.pone.0030522
  • Hu J, Li X, Chen Y, et al. The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF-κB and CD9/gp130/STAT3 signalling pathway. J Cell Mol Med. 2020;24(2):1893–1905. doi:10.1111/jcmm.14885
  • Yoon JH, Kim D, Jang JH, et al. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol Cell Proteomics. 2015;14(4):882–892. doi:10.1074/mcp.M114.039651
  • Kwon YW, Bae S, Jo YS, Seo Y, Yoon JH. Stimulation of the migration and expansion of adult mouse neural stem cells by the FPR2-specific peptide WKYMVm. Life. 2021;11:11. doi:10.3390/life11111248
  • Jun JH, Park SY, Park S, et al. Formyl peptide receptor 2 alleviates hepatic fibrosis in liver cirrhosis by vascular remodeling. Int J Mol Sci. 2021;22(4):2107. doi:10.3390/ijms22042107
  • Cattaneo F, Iaccio A, Guerra G, Montagnani S, Ammendola R. NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPRL1 in WKYMVm-stimulated human lung cancer cells. Free Radic Biol Med. 2011;51(6):1126–1136. doi:10.1016/j.freeradbiomed.2011.05.040
  • Zhang W, Chen J, Guo W, et al. WKYMVm/FPR2 alleviates spinal cord injury by attenuating the inflammatory response of microglia. Mediators Inflamm. 2022;2022:4408099. doi:10.1155/2022/4408099
  • Sato AK, Viswanathan M, Kent RB, Wood CR. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638–642. doi:10.1016/j.copbio.2006.10.002
  • Lee BI, Park MH, Heo SC, et al. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction. Biomed Chromatogr. 2018;32(3):5. doi:10.1002/bmc.4107
  • Park S, Kim SD, Lee HY, et al. A novel delivery platform for therapeutic peptides. Biochem Biophys Res Commun. 2014;450(1):13–18. doi:10.1016/j.bbrc.2014.05.049
  • Choi YH, Heo SC, Kwon YW, et al. Injectable PLGA microspheres encapsulating WKYMVM peptide for neovascularization. Acta Biomater. 2015;25:76–85. doi:10.1016/j.actbio.2015.07.033
  • Bae YS, Kim Y, Kim Y, Kim JH, Suh PG, Ryu SH. Trp-Lys-Tyr-Met-Val-D-Met is a chemoattractant for human phagocytic cells. J Leukoc Biol. 1999;66(6):915–922. doi:10.1002/jlb.66.6.915
  • O’Flaherty JT, Jacobson DP, Redman JF, Rossi AG. Translocation of protein kinase C in human polymorphonuclear neutrophils. Regulation by cytosolic Ca2(+)-independent and Ca2(+)-dependent mechanisms. J Biol Chem. 1990;265(16):9146–9152. doi:10.1016/S0021-9258(19)38823-4
  • Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol. 2015;185(5):1172–1184. doi:10.1016/j.ajpath.2015.01.020
  • Hao L, Lei X, Zhou H, Marshall AJ, Liu L. Critical role for PI3Kγ-dependent neutrophil reactive oxygen species in WKYMVm-induced microvascular hyperpermeability. J Leukoc Biol. 2019;106(5):1117–1127. doi:10.1002/jlb.3a0518-184rr
  • Kang HK, Lee HY, Kim MK, et al. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte-derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. J Immunol. 2005;175(2):685–692. doi:10.4049/jimmunol.175.2.685
  • Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10(11):1325–1334. doi:10.1016/j.intimp.2010.08.012
  • Filippi MD. Neutrophil transendothelial migration: updates and new perspectives. Blood. 2019;133(20):2149–2158. doi:10.1182/blood-2018-12-844605
  • Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85(10):1178–1190. doi:10.1134/s0006297920100065
  • Karlsson J, Fu H, Boulay F, Bylund J, Dahlgren C. The peptide Trp-Lys-Tyr-Met-Val-D-Met activates neutrophils through the formyl peptide receptor only when signaling through the formylpeptide receptor like 1 is blocked. A receptor switch with implications for signal transduction studies with inhibitors and receptor antagonists. Biochem Pharmacol. 2006;71(10):1488–1496. doi:10.1016/j.bcp.2006.02.010
  • Kim HS, Park MY, Lee SK, Park JS, Lee HY, Bae YS. Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity. BMB Rep. 2018;51(8):418–423. doi:10.5483/BMBRep.2018.51.8.080
  • Björkman L, Forsman H, Önnheim K. Data on the NADPH-oxidase activity induced by WKYMVm and galectin-3 in bone marrow derived and exudated neutrophils isolated from four different mouse strains. Data Brief. 2017;10:349–353. doi:10.1016/j.dib.2016.12.010
  • Onnheim K, Bylund J, Boulay F, Dahlgren C, Forsman H. Tumour necrosis factor (TNF)-alpha primes murine neutrophils when triggered via formyl peptide receptor-related sequence 2, the murine orthologue of human formyl peptide receptor-like 1, through a process involving the type I TNF receptor and subcellular granule mobilization. Immunology. 2008;125(4):591–600. doi:10.1111/j.1365-2567.2008.02873.x
  • Kim H, Noh EK, Lee EJ, et al. Enhanced bactericidal function by WKYMVm in patients with acute leukemia. Leuk Res. 2008;32(5):717–725. doi:10.1016/j.leukres.2007.09.006
  • Boxio R, Bossenmeyer-Pourié C, Vanderesse R, Dournon C, Nüsse O. The immunostimulatory peptide WKYMVm-NH activates bone marrow mouse neutrophils via multiple signal transduction pathways. Scand J Immunol. 2005;62(2):140–147. doi:10.1111/j.1365-3083.2005.01651.x
  • Lee HY, Jo SH, Lee C, Baek S-H, Bae Y-S. Differential production of leukotriene B4 or prostaglandin E2 by WKYMVm or serum amyloid A via formyl peptide receptor-like 1. Biochem Pharmacol. 2006;72(7):860–868. doi:10.1016/j.bcp.2006.06.022
  • Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–1875. doi:10.1126/science.294.5548.1871
  • van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968;128(3):415–435. doi:10.1084/jem.128.3.415
  • Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–452. doi:10.1146/annurev.immunol.26.021607.090326
  • Bae YS, Ju SA, Kim JY, et al. Trp-Lys-Tyr-Met-Val-D-Met stimulates superoxide generation and killing of Staphylococcus aureus via phospholipase D activation in human monocytes. J Leukoc Biol. 1999;65(2):241–248. doi:10.1002/jlb.65.2.241
  • Bae YS, Kim Y, Kim JH, Lee TG, Suh PG, Ryu SH. Independent functioning of cytosolic phospholipase A2 and phospholipase D1 in Trp-Lys-Tyr-Met-Val-D-Met-induced superoxide generation in human monocytes. J Immunol. 2000;164(8):4089–4096. doi:10.4049/jimmunol.164.8.4089
  • Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509–513. doi:10.1189/jlb.0504272
  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi:10.1016/j.immuni.2010.05.007
  • Izquierdo E, Cuevas VD, Fernández-Arroyo S, et al. Reshaping of human macrophage polarization through modulation of glucose catabolic pathways. J Immunol. 2015;195(5):2442–2451. doi:10.4049/jimmunol.1403045
  • Park GT, Kwon YW, Lee TW, et al. Formyl peptide receptor 2 activation ameliorates dermal fibrosis and inflammation in bleomycin-induced scleroderma. Front Immunol. 2019;10:2095. doi:10.3389/fimmu.2019.02095
  • Kwon YW, Heo SC, Jang IH, et al. Stimulation of cutaneous wound healing by an FPR2-specific peptide agonist WKYMVm. Wound Repair Regen. 2015;23(4):575–582. doi:10.1111/wrr.12315
  • Han X, Hu J, Zhao W, Lu H, Dai J, He Q. Hexapeptide induces M2 macrophage polarization via the JAK1/STAT6 pathway to promote angiogenesis in bone repair. Exp Cell Res. 2022;413(1):113064. doi:10.1016/j.yexcr.2022.113064
  • Zhao W, Hu J, He Q. The effect of the WKYMVm peptide on promoting mBMSC secretion of exosomes to induce M2 macrophage polarization through the FPR2 pathway. J Orthop Surg Res. 2021;16(1):171. doi:10.1186/s13018-021-02321-9
  • Domínguez-Andrés J, Joosten LA, Netea MG. Induction of innate immune memory: the role of cellular metabolism. Curr Opin Immunol. 2019;56:10–16. doi:10.1016/j.coi.2018.09.001
  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20. doi:10.1111/imm.12888
  • Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–865. doi:10.1016/j.it.2016.09.006
  • Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol. 2018;15(4):346–352. doi:10.1038/s41423-018-0005-3
  • Lee CG, Choi SY, Park SH, Park KS, Ryu SH, Sung YC. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met as a novel adjuvant for DNA vaccine. Vaccine. 2005;23(38):4703–4710. doi:10.1016/j.vaccine.2005.03.051
  • Tae YM, Park HT, Moon HG, et al. Airway activation of formyl peptide receptors inhibits Th1 and Th17 cell responses via inhibition of mediator release from immune and inflammatory cells and maturation of dendritic cells. J Immunol. 2012;188(4):1799–1808. doi:10.4049/jimmunol.1102481
  • Park B, Lee M, Kim SD, et al. Activation of formyl peptide receptor 1 elicits therapeutic effects against collagen-induced arthritis. J Cell Mol Med. 2021;25(18):8936–8946. doi:10.1111/jcmm.16854
  • French AR, Yokoyama WM. Natural killer cells and viral infections. Curr Opin Immunol. 2003;15(1):45–51. doi:10.1016/s095279150200002x
  • Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res. 2003;90:127–156. doi:10.1016/s0065-230x(03)90004-2
  • Liu J, Li J, Zeng X, et al. Formyl peptide receptor suppresses melanoma development and promotes NK cell migration. Inflammation. 2014;37(3):984–992. doi:10.1007/s10753-014-9819-z