318
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Levels of Anti-SARS-CoV-2 Spike Protein IgG Antibodies Before and After the Third Dose of Vaccination Against COVID-19

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 145-160 | Received 03 Nov 2022, Accepted 21 Dec 2022, Published online: 11 Jan 2023

References

  • Tretyn A, Szczepanek J, Skorupa M., et al. Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells. 2021;10(8):1952. doi:10.3390/cells10081952
  • Zhang S, Xu K, Li C, et al. Long-Term Kinetics of SARS-CoV-2 Antibodies and Impact of Inactivated Vaccine on SARS-CoV-2 Antibodies Based on a COVID-19 Patients Cohort. Front Immunol. 2022;13:48.
  • Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91(1):157–160. doi:10.23750/abm.v91i1.9397
  • Umakanthan S, Sahu P, Ranade AV, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. doi:10.1136/postgradmedj-2020-138234
  • Zeng H, Ma Y, Zhou Z, et al. Spectrum and Clinical Characteristics of Symptomatic and Asymptomatic Coronavirus Disease 2019 (COVID-19) With and Without Pneumonia. Front Med. 2021;8:645651. doi:10.3389/fmed.2021.645651
  • Trybek A, Lichota P, Wilczynski J, Zieliński R. Neck phlegmon in COVID-19 patients. Med Studies. 2021;37(4):349–353. doi:10.5114/ms.2021.112392
  • Pabjan P, Błoniarczyk P, Stępień PM, Garbat A, Włosek M, Zarębska-Michaluk D. Pulmonary embolism complicating the course of COVID-19 – an underestimated condition? Med Studies. 2020;36(3):206–210. doi:10.5114/ms.2020.99542
  • WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int. Accessed September 23, 2022.
  • Gianfagna F, Veronesi G, Baj A, et al. Anti-SARS-CoV-2 antibody levels and kinetics of vaccine response: potential role for unresolved inflammation following recovery from SARS-CoV-2 infection. Sci Rep. 2022;12(1):385. doi:10.1038/s41598-021-04344-y
  • Miralles O, Sanchez-Rodriguez D, Marco E, et al. Unmet needs, health policies, and actions during the COVID-19 pandemic: a report from six European countries. Eur Geriatr Med. 2021;12(1):193–204. doi:10.1007/s41999-020-00415-x
  • Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318–324. doi:10.1038/d41586-021-02483-w
  • Turner JS, O’Halloran JA, Kalaidina E, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596(7870):109–113. doi:10.1038/s41586-021-03738-2
  • Umakanthan S, Bukelo MM, Bukelo MJ, Patil S, Subramaniam N, Sharma R. Social Environmental Predictors of COVID-19 Vaccine Hesitancy in India: a Population-Based Survey. Vaccines. 2022;10(10):1749. doi:10.3390/vaccines10101749
  • Umakanthan S, Patil S, Subramaniam N, Sharma R. COVID-19 Vaccine Hesitancy and Resistance in India Explored through a Population-Based Longitudinal Survey. Vaccines. 2021;9(10):1064. doi:10.3390/vaccines9101064
  • Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-Based Vaccines. Vaccines. 2021;9(4):390. doi:10.3390/vaccines9040390
  • Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82. doi:10.1038/s41577-020-00480-0
  • Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–424. doi:10.1038/s41579-021-00573-0
  • Schroeder HW, Cavacini L. Structure and Function of Immunoglobulins. J Allergy Clin Immunol. 2010;125(2):S41–S52. doi:10.1016/j.jaci.2009.09.046
  • Higgins V, Fabros A, Kulasingam V. Quantitative Measurement of Anti-SARS-CoV-2 Antibodies: analytical and Clinical Evaluation. J Clin Microbiol. 2021;59(4):e03149–20. doi:10.1128/JCM.03149-20
  • Skorupa M, Szczepanek J, Goroncy A, et al. The Dynamics of Changes in the Concentration of IgG against the S1 Subunit in Polish Healthcare Workers in the Period from 1 to 12 Months after Injection, Including Four COVID-19 Vaccines. Vaccines. 2022;10(4):506. doi:10.3390/vaccines10040506
  • Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T.sub.H1 T cell responses. Nature. 2020;586(7830):594–600. doi:10.1038/s41586-020-2814-7
  • Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–593. doi:10.1038/s41586-020-2639-4
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Eng J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389
  • Greaney AJ, Loes AN, Gentles LE, et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Sci Transl Med. 2021;13(600):eabi9915. doi:10.1126/scitranslmed.abi9915
  • Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9(3):186. doi:10.3390/pathogens9030186
  • Piccoli L, Park YJ, Tortorici MA, et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020;183(4):1024–1042.e21. doi:10.1016/j.cell.2020.09.037
  • Salazar E, Kuchipudi SV, Christensen PA, et al. Convalescent plasma anti-SARS-CoV-2 spike protein ectodomain and receptor-binding domain IgG correlate with virus neutralization. J Clin Invest. 2020;130(12):6728–6738. doi:10.1172/JCI141206
  • Lo Sasso B, Agnello L, Giglio RV, et al. Longitudinal analysis of anti-SARS-CoV-2 S-RBD IgG antibodies before and after the third dose of the BNT162b2 vaccine. Sci Rep. 2022;12(1):8679. doi:10.1038/s41598-022-12750-z
  • Doria-Rose N, Suthar MS, Makowski M, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 2021;384(23):2259–2261. doi:10.1056/NEJMc2103916
  • Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202–221. doi:10.1016/j.cmi.2021.10.005
  • Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Eng J Med. 2021;385(24):e84. doi:10.1056/NEJMoa2114583
  • Chen X, Pan Z, Yue S, et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduction Targeted Therapy. 2020;5. doi:10.1038/s41392-020-00301-9
  • Notarte KI, Guerrero-Arguero I, Velasco JV, et al. Characterization of the significant decline in humoral immune response six months post-SARS-CoV-2 mRNA vaccination: a systematic review. J Med Virol. 2022;94(7):2939–2961. doi:10.1002/jmv.27688
  • Đaković Rode O, Bodulić K, Zember S, et al. Decline of Anti-SARS-CoV-2 IgG Antibody Levels 6 Months after Complete BNT162b2 Vaccination in Healthcare Workers to Levels Observed Following the First Vaccine Dose. Vaccines. 2022;10(2):153. doi:10.3390/vaccines10020153
  • Romero-Ibarguengoitia ME, Rivera-Salinas D, Hernández-Ruíz YG, et al. Effect of the third dose of BNT162b2 vaccine on quantitative SARS-CoV-2 spike 1–2 IgG antibody titers in healthcare personnel. PLoS One. 2022;17(3):e0263942. doi:10.1371/journal.pone.0263942
  • Cromer D, Steain M, Reynaldi A, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe. 2022;3(1):e52–e61. doi:10.1016/S2666-5247(21)00267-6
  • Yavuz E, Günal Ö, Başbulut E, Şen A. SARS-CoV-2 specific antibody responses in healthcare workers after a third booster dose of CoronaVac or BNT162b2 vaccine. J Med Virol. 2022;94(8):3768–3775. doi:10.1002/jmv.27794
  • Kontopoulou K, Nakas CT, Belai C, Papazisis G. Antibody titers after a third dose of the SARS-CoV-2 BNT162b2 vaccine in immunocompromised adults in Greece: is a fourth dose necessary? J Med Virol. 2022;94(10):5056–5060. doi:10.1002/jmv.27954
  • Irsan A, Mardhia M, Rialita A. Evaluation of Humoral Response of Emergency Unit Healthcare Workers after Third Dose of COVID-19 Vaccination. Muhammadiyah Med J. 2022;3(1):27–32. doi:10.24853/mmj.3.1.27-32
  • Simon B, Rubey H, Gromann M, et al. SARS-CoV-2 Antibody and T Cell Response after a Third Vaccine Dose in Hemodialysis Patients Compared with Healthy Controls. Vaccines. 2022;10(5):694. doi:10.3390/vaccines10050694
  • Eliakim-Raz N, Stemmer A, Ghantous N, et al. Antibody Titers After a Third and Fourth SARS-CoV-2 BNT162b2 Vaccine Dose in Older Adults. JAMA Netw Open. 2022;5(7):e2223090. doi:10.1001/jamanetworkopen.2022.23090
  • Soeorg H, Jõgi P, Naaber P, Ottas A, Toompere K, Lutsar I. Seroprevalence and levels of IgG antibodies after COVID-19 infection or vaccination. Infect Dis. 2022;54(1):63–71. doi:10.1080/23744235.2021.1974540
  • Yang HS, Costa V, Racine-Brzostek SE, et al. Association of Age With SARS-CoV-2 Antibody Response. JAMA Network Open. 2021;4(3):e214302. doi:10.1001/jamanetworkopen.2021.4302
  • Ishaq SE, Abdulqadir SZ, Khudhur ZO, et al. Comparative study of SARS-CoV-2 antibody titers between male and female COVID-19 patients living in Kurdistan region of Iraq. Gene Reports. 2021;25:101409. doi:10.1016/j.genrep.2021.101409
  • Barda N, Dagan N, Cohen C, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet. 2021;398(10316):2093–2100. doi:10.1016/S0140-6736(21)
  • Alharbi NK, Al-Tawfiq JA, Alwehaibe A, et al. Persistence of Anti-SARS-CoV-2 Spike IgG Antibodies Following COVID-19 Vaccines. IDR. 2022;15:4127–4136. doi:10.2147/IDR.S362848
  • Anastassopoulou C, Antoni D, Manoussopoulos Y, et al. Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: a mixed effects model across two vaccination periods. PLoS One. 2022;17(4):e0266958. doi:10.1371/journal.pone.0266958
  • Wei J, Stoesser N, Matthews PC, et al. Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nat Microbiol. 2021;6(9):1140–1149. doi:10.1038/s41564-021-00947-3
  • Demonbreun AR, Sancilio A, Velez ME, et al. COVID-19 mRNA Vaccination Generates Greater Immunoglobulin G Levels in Women Compared to Men. J Infect Dis. 2021;224(5):793–797. doi:10.1093/infdis/jiab314
  • Pang NYL, Pang ASR, Chow VT, Wang DY. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Military Med Res. 2021;8(1):47. doi:10.1186/s40779-021-00342-3
  • Pellini R, Venuti A, Pimpinelli F, et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. EClinicalMedicine. 2021;36:100928. doi:10.1016/j.eclinm.2021.100928
  • Flanagan KL, Fink AL, Plebanski M, Klein SL. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu Rev Cell Dev Biol. 2017;33:577–599. doi:10.1146/annurev-cellbio-100616-060718
  • Alpert A, Pickman Y, Leipold M, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25(3):487–495. doi:10.1038/s41591-019-0381-y
  • Ali H, Alahmad B, Al-Shammari AA, et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. Front Public Health. 2021;9:778243. doi:10.3389/fpubh.2021.778243
  • Manisty C, Otter AD, Treibel TA, et al. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet. 2021;397(10279):1057–1058. doi:10.1016/S0140-6736(21)00501-8
  • Guo J, Li L, Wu Q, et al. Detection and predictors of anti-SARS-CoV-2 antibody levels in COVID-19 patients at 8 months after symptom onset. Future Virol. 2021;16(12):795. doi:10.2217/fvl-2021-0141
  • Purushotham JN, van Doremalen N, Munster VJ. SARS-CoV-2 vaccines: anamnestic response in previously infected recipients. Cell Res. 2021;31(8):827–828. doi:10.1038/s41422-021-00516-7
  • Schwarzkopf S, Krawczyk A, Knop D, et al. Cellular Immunity in COVID-19 Convalescents with PCR-Confirmed Infection but with Undetectable SARS-CoV-2-Specific IgG. Emerg Infect Dis. 2021;27(1):122–129. doi:10.3201/2701.203772
  • Arya R, Kumari S, Pandey B, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021;433(2):166725. doi:10.1016/j.jmb.2020.11.024
  • Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: lessons From the Past. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.00011
  • Huțanu A, Dobreanu M. Antibody Response After Sars-Cov-2 mRNA Vaccine In Naïve And Previously Infected Healthcare Workers. Health Problems Civilization. 2021;16(1):48–56. doi:10.5114/hpc.2021.111783
  • Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592(7855):616–622. doi:10.1038/s41586-021-03324-6
  • Xie X, Liu Y, Liu J, et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 2021;27(4):620–621. doi:10.1038/s41591-021-01270-4