392
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review

& ORCID Icon
Pages 257-267 | Received 03 Nov 2022, Accepted 18 Jan 2023, Published online: 21 Jan 2023

References

  • Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019–1024. doi:10.1016/j.jcyt.2019.08.002
  • Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42. doi:10.1038/nm.3028
  • Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–213. doi:10.1210/er.2008-0031
  • Ayoub S, Berbéri A, Fayyad-Kazan M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol Biol Rep. 2020;47(3):2381–2389. doi:10.1007/s11033-020-05298-6
  • Zhu Y, Wang Y, Zhao B, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther. 2017;8(1):64. doi:10.1186/s13287-017-0510-9
  • Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 2021;269:120539. doi:10.1016/j.biomaterials.2020.120539
  • Maqsood M, Kang M, Wu X, et al. Adult mesenchymal stem cells and their exosomes: sources, characteristics, and application in regenerative medicine. Life Sci. 2020;256:118002. doi:10.1016/j.lfs.2020.118002
  • Moll G, Ankrum JA, Kamhieh-Milz J, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med. 2019;25(2):149–163. doi:10.1016/j.molmed.2018.12.006
  • Moll G, Ankrum JA, Olson SD, et al. Improved MSC minimal criteria to maximize patient safety: a call to embrace tissue factor and hemocompatibility assessment of MSC products. Stem Cells Transl Med. 2022;11(1):2–13. doi:10.1093/stcltm/szab005
  • Moll G, Rasmusson-Duprez I, von Bahr L, et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012;30(7):1565–1574. doi:10.1002/stem.1111
  • Cagliani J, Grande D, Molmenti EP, et al. Immunomodulation by mesenchymal stromal cells and their clinical applications. J Stem Cell Regen Biol. 2017;3(2). doi:10.15436/2471-0598.17.022
  • English K, French A, Wood KJ. Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell. 2010;7(4):431–442. doi:10.1016/j.stem.2010.09.009
  • Fu Y, Karbaat L, Wu L, et al. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev. 2017;23(6):515–528. doi:10.1089/ten.teb.2016.0365
  • El Agha E, Kramann R, Schneider RK, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell. 2017;21(2):166–177. doi:10.1016/j.stem.2017.07.011
  • Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18(3):e264–e77. doi:10.18295/squmj.2018.18.03.002
  • Tsiapalis D, ODriscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells. 2020;9(4):991. doi:10.3390/cells9040991
  • Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021;10(8):1959. doi:10.3390/cells10081959
  • Kusuma GD, Carthew J, Lim R, et al. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017;26(9):617–631. doi:10.1089/scd.2016.0349
  • Zhou Y, Yamamoto Y, Xiao Z, et al. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med. 2019;8(7):1025. doi:10.3390/jcm8071025
  • Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20. doi:10.1046/j.1365-3083.2003.01176.x
  • Doorn J, Moll G, Le Blanc K, et al. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101–115. doi:10.1089/ten.teb.2011.0488
  • Erkers T, Nava S, Yosef J, et al. Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells Dev. 2013;22(19):2596–2605. doi:10.1089/scd.2013.0079
  • Ringdén O, Moll G, Gustafsson B, et al. Mesenchymal stromal cells for enhancing hematopoietic engraftment and treatment of graft-versus-host disease, hemorrhages and acute respiratory distress syndrome. Front Immunol. 2022;13:839844. doi:10.3389/fimmu.2022.839844
  • Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82–83:1–11. doi:10.1016/j.addr.2014.10.007
  • He J, Zhang N, Zhu Y, et al. MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials. 2021;265:120448. doi:10.1016/j.biomaterials.2020.120448
  • Kuang S, He F, Liu G, et al. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis. Biomaterials. 2021;275:120963. doi:10.1016/j.biomaterials.2021.120963
  • Kavanagh DP, Robinson J, Kalia N. Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem Cell Rev Rep. 2014;10(4):587–599. doi:10.1007/s12015-014-9510-7
  • Moll G, Alm JJ, Davies LC, et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014;32(9):2430–2442. doi:10.1002/stem.1729
  • Moll G, Geißler S, Catar R, et al. Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol. 2016;951:77–98.
  • Afflerbach AK, Kiri MD, Detinis T, et al. Mesenchymal stem cells as a promising cell source for integration in novel in vitro models. Biomolecules. 2020;10(9):1306. doi:10.3390/biom10091306
  • Halim A, Ariyanti AD, Luo Q, et al. Recent progress in engineering mesenchymal stem cell differentiation. Stem Cell Rev Rep. 2020;16(4):661–674. doi:10.1007/s12015-020-09979-4
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–926. doi:10.1126/science.8493529
  • Wang P, Zhao L, Chen W, et al. Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res. 2014;93(7):618–625. doi:10.1177/0022034514534689
  • Brassard JA, Lutolf MP. Engineering stem cell self-organization to build better organoids. Cell Stem Cell. 2019;24(6):860–876. doi:10.1016/j.stem.2019.05.005
  • Wechsler ME, Rao VV, Borelli AN, et al. Engineering the MSC secretome: a hydrogel focused approach. Adv Healthc Mater. 2021;10(7):e2001948. doi:10.1002/adhm.202001948
  • Yin X, Mead BE, Safaee H, et al. Engineering Stem Cell Organoids. Cell Stem Cell. 2016;18(1):25–38. doi:10.1016/j.stem.2015.12.005
  • Swanson WB, Omi M, Zhang Z, et al. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials. 2021;272:120769. doi:10.1016/j.biomaterials.2021.120769
  • Hiew SH, Wang JK, Koh K, et al. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomater. 2021;136:111–123. doi:10.1016/j.actbio.2021.09.023
  • Muslimov AR, Timin AS, Bichaykina VR, et al. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers. Biomater Sci. 2020;8(4):1137–1147. doi:10.1039/C9BM00926D
  • Mangir N, Roman S, MacNeil S. Improving the biocompatibility of biomaterial constructs and constructs delivering cells for the pelvic floor. Curr Opin Urol. 2019;29(4):419–425. doi:10.1097/MOU.0000000000000621
  • Giri TK, Alexander A, Agrawal M, et al. Current Status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther. 2019;14(2):117–126. doi:10.2174/1574888X13666180502103831
  • Ohnishi H, Oda Y, Ohgushi H. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application. Sci Technol Adv Mater. 2010;11(1):014110. doi:10.1088/1468-6996/11/1/014110
  • Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–1698. doi:10.1039/C7BM00315C
  • Sharma S, Soni VP, Bellare JR. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants. J Mater Sci Mater Med. 2009;20(7):1427–1436. doi:10.1007/s10856-009-3712-6
  • Liu X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials. 2002;23(20):4065–4077. doi:10.1016/S0142-9612(02)00143-6
  • Hurle K, Weichhold J, Brueckner M, et al. Hydration mechanism of a calcium phosphate cement modified with phytic acid. Acta Biomater. 2018;80:378–389. doi:10.1016/j.actbio.2018.09.002
  • Xia Y, Guo Y, Yang Z, et al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. Mater Sci Eng C Mater Biol Appl. 2019;104:109955. doi:10.1016/j.msec.2019.109955
  • Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–370. doi:10.1016/j.dental.2015.01.004
  • Omar O, Engstrand T, Kihlström Burenstam Linder L, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A. 2020;117(43):26660–26671. doi:10.1073/pnas.2007635117
  • Cancedda R, Bianchi G, Derubeis A, et al. Cell therapy for bone disease: a review of current status. Stem Cells. 2003;21(5):610–619. doi:10.1634/stemcells.21-5-610
  • Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic. Experiments in Rats. Acta Orthop Scand. 1989;60(3):334–339. doi:10.3109/17453678909149289
  • Krebsbach PH, Mankani MH, Satomura K, et al. Repair of craniotomy defects using bone marrow stromal cells. Transplantation. 1998;66(10):1272–1278. doi:10.1097/00007890-199811270-00002
  • Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344(5):385–386. doi:10.1056/NEJM200102013440516
  • Zakaria MY, Sulong AB, Muhamad N, et al. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview. Mater Sci Eng C Mater Biol Appl. 2019;97:884–895. doi:10.1016/j.msec.2018.12.056
  • Raza MR, Sulong AB, Muhamad N, et al. Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding. Mater Des. 2015;87:386–392. doi:10.1016/j.matdes.2015.08.031
  • Gómez-Barrena E, Padilla-Eguiluz N, Rosset P, et al. Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury. 2020;51(Suppl 1):S63–S73. doi:10.1016/j.injury.2020.02.070
  • Gómez-Barrena E, Padilla-Eguiluz NG, García-Rey E, et al. Validation of a long bone fracture non-union healing score after treatment with mesenchymal stromal cells combined to biomaterials. Injury. 2020;51(Suppl 1):S55–S62. doi:10.1016/j.injury.2020.02.030
  • Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18(8):583–590. doi:10.1016/S0142-9612(96)00181-0
  • Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: a review. J Biomed Mater Res A. 2016;104(5):1276–1284. doi:10.1002/jbm.a.35647
  • Orive G, Carcaboso AM, Hernández RM, et al. Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules. 2005;6(2):927–931. doi:10.1021/bm049380x
  • Orive G, Tam SK, Pedraz JL, et al. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials. 2006;27(20):3691–3700. doi:10.1016/j.biomaterials.2006.02.048
  • Xu L, Urita A, Onodera T, et al. Ultrapurified alginate gel containing bone marrow aspirate concentrate enhances cartilage and bone regeneration on osteochondral defects in a rabbit model. Am J Sports Med. 2021;49(8):2199–2210. doi:10.1177/03635465211014186
  • Choe G, Kim SW, Park J, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513. doi:10.1016/j.biomaterials.2019.119513
  • Lv K, Li Q, Zhang L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics. 2019;9(24):7403–7416. doi:10.7150/thno.32637
  • Drzeniek NM, Mazzocchi A, Schlickeiser S, et al. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication. 2021;13:4. doi:10.1088/1758-5090/ac0a32
  • Sahu N, Agarwal P, Grandi F, et al. Encapsulated mesenchymal stromal cell microbeads promote endogenous regeneration of osteoarthritic cartilage ex vivo. Adv Healthc Mater. 2021;10(8):e2002118. doi:10.1002/adhm.202002118
  • Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358–1368. doi:10.1016/j.ijbiomac.2017.07.087
  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–1174. doi:10.3390/md13031133
  • Anitha A, Sowmya S, Kumar PT, et al. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39(9):1644–1667.
  • Bushkalova R, Farno M, Tenailleau C, et al. Alginate-chitosan PEC scaffolds: a useful tool for soft tissues cell therapy. Int J Pharm. 2019;571:118692. doi:10.1016/j.ijpharm.2019.118692
  • Sheehy EJ, Mesallati T, Vinardell T, et al. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomater. 2015;13:245–253. doi:10.1016/j.actbio.2014.11.031
  • Bhat A, Dreifke MB, Kandimalla Y, et al. Evaluation of cross-linked chitosan microparticles for bone regeneration. J Tissue Eng Regen Med. 2010;4(7):532–542. doi:10.1002/term.270
  • Zwingenberger B, Vater C, Bell RL, et al. Treatment of critical-size femoral bone defects with chitosan scaffolds produced by a novel process from textile engineering. Biomedicines. 2021;9(8):1015. doi:10.3390/biomedicines9081015
  • Zhao X, Liu Y, Jia P, et al. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res Ther. 2021;12(1):196. doi:10.1186/s13287-021-02262-4
  • Yin S, Cao Y. Hydrogels for large-scale expansion of stem cells. Acta Biomater. 2021;128:1–20. doi:10.1016/j.actbio.2021.03.026
  • Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci Transl Med. 2020;12(534):eaay6853. doi:10.1126/scitranslmed.aay6853
  • Koh RH, Jin Y, Kim J, et al. Inflammation-modulating hydrogels for osteoarthritis cartilage tissue engineering. Cells. 2020;9(2):419. doi:10.3390/cells9020419
  • Jin R, Teixeira LS, Dijkstra PJ, et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials. 2010;31(11):3103–3113. doi:10.1016/j.biomaterials.2010.01.013
  • Yan S, Wang T, Feng L, et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules. 2014;15(12):4495–4508. doi:10.1021/bm501313t
  • Kim HD, Heo J, Hwang Y, et al. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A. 2015;21(3–4):757–766. doi:10.1089/ten.tea.2014.0233
  • Park H, Choi B, Hu J, et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9(1):4779–4786. doi:10.1016/j.actbio.2012.08.033
  • Jung HH, Park K, Han DK. Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. J Control Release. 2010;147(1):84–91. doi:10.1016/j.jconrel.2010.06.020
  • Balakrishnan B, Joshi N, Jayakrishnan A, et al. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater. 2014;10(8):3650–3663. doi:10.1016/j.actbio.2014.04.031
  • Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–1649. doi:10.1016/j.addr.2008.08.002
  • Genovese P, Patel A, Ziemkiewicz N, et al. Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma. J Tissue Eng Regen Med. 2021;15(12):1131–1143. doi:10.1002/term.3243
  • Saffari TM, Chan K, Saffari S, et al. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng. 2021;118(7):2804–2814. doi:10.1002/bit.27799
  • He X, Wang Q, Zhao Y, et al. Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: a randomized clinical trial. JAMA Netw Open. 2020;3(9):e2016236. doi:10.1001/jamanetworkopen.2020.16236
  • Kim K, Bou-Ghannam S, Kameishi S, et al. Allogeneic mesenchymal stem cell sheet therapy: a new frontier in drug delivery systems. J Control Release. 2021;330:696–704. doi:10.1016/j.jconrel.2020.12.028
  • Yamato M, Okano T. Cell sheet engineering. Mater Today. 2004;7(5):42–47. doi:10.1016/S1369-7021(04)00234-2
  • Zurina IM, Presniakova VS, Butnaru DV, et al. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater. 2020;113:63–83. doi:10.1016/j.actbio.2020.06.016
  • Shimizu T, Sekine H, Yang J, et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 2006;20(6):708–710. doi:10.1096/fj.05-4715fje
  • Baksh N, Gallant ND, Toomey RG. Cell sheet engineering for integrating functional tissue in vivo: successes and challenges. MRS Bulletin. 2017;5(42):350–355. doi:10.1557/mrs.2017.91
  • Long T, Zhu Z, Awad HA, et al. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials. 2014;35(9):2752–2759. doi:10.1016/j.biomaterials.2013.12.039
  • Oka M, Sekiya S, Sakiyama R, et al. Hepatocyte growth factor-secreting mesothelial cell sheets suppress progressive fibrosis in a rat model of CKD. J Am Soc Nephrol. 2019;30(2):261–276. doi:10.1681/ASN.2018050556
  • Imafuku A, Oka M, Miyabe Y, et al. Rat mesenchymal stromal cell sheets suppress renal fibrosis via microvascular protection. Stem Cells Transl Med. 2019;8(12):1330–1341. doi:10.1002/sctm.19-0113
  • Iwata T, Yamato M, Washio K, et al. Periodontal regeneration with autologous periodontal ligament-derived cell sheets - A safety and efficacy study in ten patients. Regen Ther. 2018;9:38–44. doi:10.1016/j.reth.2018.07.002
  • Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455):eaaf3227. doi:10.1126/scitranslmed.aaf3227
  • Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. doi:10.1016/j.stem.2015.06.007
  • Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20(12):715–722. doi:10.1016/j.tcb.2010.09.012
  • Grayson WL, Bunnell BA, Martin E, et al. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11(3):140–150. doi:10.1038/nrendo.2014.234
  • Yamamoto K, Yamato M, Morino T, et al. Middle ear mucosal regeneration by tissue-engineered cell sheet transplantation. NPJ Regen Med. 2017;2:6. doi:10.1038/s41536-017-0010-7
  • Raghav PK, Mann Z, Ahlawat S, et al. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol. 2022;918:174657. doi:10.1016/j.ejphar.2021.174657
  • Corradetti B, Ferrari M. Nanotechnology for mesenchymal stem cell therapies. J Control Release. 2016;240:242–250. doi:10.1016/j.jconrel.2015.12.042
  • Xu J, Cai N, Xu W, et al. Mechanical enhancement of nanofibrous scaffolds through polyelectrolyte complexation. Nanotechnology. 2013;24(2):025701. doi:10.1088/0957-4484/24/2/025701
  • Sahu A, Jeon J, Lee MS, et al. Nanozyme impregnated mesenchymal stem cells for hepatic ischemia-reperfusion injury alleviation. ACS Appl Mater Interfaces. 2021;13(22):25649–25662. doi:10.1021/acsami.1c03027
  • Fan W, Yuan L, Li J, et al. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110705. doi:10.1016/j.msec.2020.110705
  • Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020;113:130–143. doi:10.1016/j.actbio.2020.05.040
  • Cantore S, Crincoli V, Boccaccio A, et al. Recent advances in endocrine, metabolic and immune disorders: Mesenchymal Stem Cells (MSCs) and engineered scaffolds. Endocr Metab Immune Disord Drug Targets. 2018;18(5):466–469. doi:10.2174/1871530318666180423102905
  • Trombetta R, Inzana JA, Schwarz EM, et al. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45(1):23–44. doi:10.1007/s10439-016-1678-3
  • Lian M, Sun B, Han Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 2021;274:120841. doi:10.1016/j.biomaterials.2021.120841
  • Ji W, Hou B, Lin W, et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium. Acta Biomater. 2020;116:268–284. doi:10.1016/j.actbio.2020.09.012
  • Li H, Xue K, Kong N, et al. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials. 2014;35(12):3803–3818. doi:10.1016/j.biomaterials.2014.01.039
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194. doi:10.1016/j.cis.2018.11.008
  • Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol J. 2014;9(7):904–914. doi:10.1002/biot.201300432
  • Si YL, Zhao YL, Hao HJ, et al. MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev. 2011;10(1):93–103. doi:10.1016/j.arr.2010.08.005
  • Jung JW, Kwon M, Choi JC, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J. 2013;54(5):1293–1296. doi:10.3349/ymj.2013.54.5.1293
  • Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3(5):e2213. doi:10.1371/journal.pone.0002213
  • Tang Q, Chen Q, Lai X, et al. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction. PLoS One. 2013;8(12):e81844. doi:10.1371/journal.pone.0081844
  • Teng IW, Hou PC, Lee KD, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res. 2011;71(13):4653–4663. doi:10.1158/0008-5472.CAN-10-3418
  • Zhu Y, Song X, Wang J, et al. Placental mesenchymal stem cells of fetal origin deposit epigenetic alterations during long-term culture under serum-free condition. Expert Opin Biol Ther. 2015;15(2):163–180. doi:10.1517/14712598.2015.960837