298
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Effects of Neuropeptides on Dendritic Cells in the Pathogenesis of Psoriasis

, , , , &
Pages 35-43 | Received 21 Nov 2022, Accepted 24 Dec 2022, Published online: 06 Jan 2023

References

  • Kim TG, Kim SH, Lee MG. The origin of skin dendritic cell network and its role in psoriasis. Int J Mol Sci. 2017;19(1):42. doi:10.3390/ijms19010042
  • Caputo V, Strafella C, Cosio T, et al. Pharmacogenomics: an update on biologics and small-molecule drugs in the treatment of psoriasis. Genes. 2021;12(9):1398. doi:10.3390/genes12091398
  • Amanat M, Salehi M, Rezaei N. Neurological and psychiatric disorders in psoriasis. Rev Neurosci. 2018;29(7):805–813. doi:10.1515/revneuro-2017-0108
  • Kwon CW, Fried RG, Nousari Y, Ritchlin C, Tausk F. Psoriasis: psychosomatic, somatopsychic, or both? Clin Dermatol. 2018;36(6):698–703. doi:10.1016/j.clindermatol.2018.08.009
  • Hunter HJ, Griffiths CE, Kleyn CE. Does psychosocial stress play a role in the exacerbation of psoriasis? Br J Dermatol. 2013;169(5):965–974. doi:10.1111/bjd.12478
  • Saraceno R, Kleyn CE, Terenghi G, Griffiths CE. The role of neuropeptides in psoriasis. Br J Dermatol. 2006;155(5):876–882. doi:10.1111/j.1365-2133.2006.07518.x
  • Marek-Jozefowicz L, Czajkowski R, Borkowska A, et al. The brain-skin axis in psoriasis: psychological, psychiatric, hormonal, and dermatological aspects. Int J Mol Sci. 2022;23(2):669. doi:10.3390/ijms23020669
  • Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis ESC. Dendritic cells revisited. Annu Rev Immunol. 2021;39:131–166. doi:10.1146/annurev-immunol-061020-053707
  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20. doi:10.1111/imm.12888
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–277. doi:10.1038/nrc3258
  • Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323(19):1945–1960. doi:10.1001/jama.2020.4006
  • Lou F, Sun Y, Xu Z, et al. Excessive polyamine generation in keratinocytes promotes self-RNA sensing by dendritic cells in psoriasis. Immunity. 2020;53(1):204–16 e10. doi:10.1016/j.immuni.2020.06.004
  • Garshick MS, Ward NL, Krueger JG, Berger JS. Cardiovascular risk in patients with psoriasis: JACC review topic of the week. J Am Coll Cardiol. 2021;77(13):1670–1680. doi:10.1016/j.jacc.2021.02.009
  • Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018;391(10136):2273–2284. doi:10.1016/s0140-6736(18)30830-4
  • Glitzner E, Korosec A, Brunner PM, et al. Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Mol Med. 2014;6(10):1312–1327. doi:10.15252/emmm.201404114
  • Eidsmo L, Martini E. Human Langerhans cells with pro-inflammatory features relocate within psoriasis lesions. Front Immunol. 2018;9:300. doi:10.3389/fimmu.2018.00300
  • Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE. Impaired Langerhans cell migration in psoriasis. J Exp Med. 2006;203(4):953–960. doi:10.1084/jem.20052367
  • Nakamizo S, Dutertre CA, Khalilnezhad A, et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med. 2021;218(9):e20202345. doi:10.1084/jem.20202345
  • Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158(4):543–559. doi:10.1097/j.pain.0000000000000831
  • Charles A, Pozo-Rosich P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet. 2019;394(10210):1765–1774. doi:10.1016/s0140-6736(19)32504-8
  • Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR review 25. Br J Pharmacol. 2018;175(1):3–17. doi:10.1111/bph.14075
  • Hargreaves R, Olesen J. Calcitonin gene-related peptide modulators: the history and renaissance of a new migraine drug class. Headache. 2019;59(6):951–970. doi:10.1111/head.13510
  • Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–1142. doi:10.1152/physrev.00034.2013
  • Kleeberg-Hartmann J, Vogler B, Messlinger K. Petasin and isopetasin reduce CGRP release from trigeminal afferents indicating an inhibitory effect on TRPA1 and TRPV1 receptor channels. J Headache Pain. 2021;22(1):23. doi:10.1186/s10194-021-01235-5
  • Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol. 2018;40(3):249–259. doi:10.1007/s00281-018-0675-z
  • Benitez-Angeles M, Morales-Lazaro SL, Juarez-Gonzalez E, Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020;21(10):3421. doi:10.3390/ijms21103421
  • Stander S, Moormann C, Schumacher M, et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol. 2004;13(3):129–139. doi:10.1111/j.0906-6705.2004.0178.x
  • Nassini R, Materazzi S, Benemei S, Geppetti P. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol. 2014;167:1–43. doi:10.1007/112_2014_18
  • Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–384. doi:10.1146/annurev-cellbio-101011-155833
  • Jiang WY, Raychaudhuri SP, Farber EM. Double-labeled immunofluorescence study of cutaneous nerves in psoriasis. Int J Dermatol. 1998;37(8):572–574. doi:10.1046/j.1365-4362.1998.00533.x
  • Reich A, Orda A, Wisnicka B, Szepietowski JC. Plasma concentration of selected neuropeptides in patients suffering from psoriasis. Exp Dermatol. 2007;16(5):421–428. doi:10.1111/j.1600-0625.2007.00544.x
  • Dainichi T, Kitoh A, Otsuka A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 2018;19(12):1286–1298. doi:10.1038/s41590-018-0256-2
  • Hosoi J, Murphy GF, Egan CL, et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 1993;363(6425):159–163. doi:10.1038/363159a0
  • Gerbaud P, Guibourdenche J, Jarray R, et al. APN/CD13 is over-expressed by psoriatic fibroblasts and is modulated by CGRP and IL-4 but not by retinoic acid treatment. J Cell Physiol. 2018;233(2):958–967. doi:10.1002/jcp.25941
  • Yu XJ, Li CY, Xu YH, Chen LM, Zhou CL. Calcitonin gene-related peptide increases proliferation of human HaCaT keratinocytes by activation of MAP kinases. Cell Biol Int. 2009;33(11):1144–1148. doi:10.1016/j.cellbi.2009.07.003
  • Zhang X, Cao J, Zhao S, et al. Nociceptive sensory fibers drive interleukin-23 production in a murine model of psoriasis via calcitonin gene-related peptide. Front Immunol. 2021;12:743675. doi:10.3389/fimmu.2021.743675
  • Naukkarinen A, Jarvikallio A, Lakkakorpi J, Harvima IT, Harvima RJ, Horsmanheimo M. Quantitative histochemical analysis of mast cells and sensory nerves in psoriatic skin. J Pathol. 1996;180(2):200–205. doi:10.1002/(SICI)1096-9896(199610)180:2<200::AID-PATH632>3.0.CO;2-Z
  • Lee SH, Tonello R, Im ST, et al. Resolvin D3 controls mouse and human TRPV1-positive neurons and preclinical progression of psoriasis. Theranostics. 2020;10(26):12111–12126. doi:10.7150/thno.52135
  • Yin Q, Sun L, Cai X, et al. Lidocaine ameliorates psoriasis by obstructing pathogenic CGRP signaling-mediated sensory neuron-dendritic cell communication. J Invest Dermatol. 2022;142:2173–2183.e6. doi:10.1016/j.jid.2022.01.002
  • Cosio T, Campione E. A new hypothesis in botulin therapy for depression: insula cortex modification. Dermatol Ther. 2019;32(5):e13008. doi:10.1111/dth.13008
  • Amalia SN, Uchiyama A, Baral H, et al. Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J Dermatol Sci. 2021;101(1):58–68. doi:10.1016/j.jdermsci.2020.11.003
  • Peng F, Zhao S, Zhang X, Long S, He Y. Calcitonin gene-related peptide upregulates IL-17A and IL-22 in gammadelta-T cells through the paracrine effect of Langerhans cells on LC/gammadelta-T co-culture model. J Neuroimmunol. 2022;364:577792. doi:10.1016/j.jneuroim.2021.577792
  • Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity. 2015;43(3):515–526. doi:10.1016/j.immuni.2015.08.016
  • Carucci JA, Ignatius R, Wei Y, et al. Calcitonin gene-related peptide decreases expression of HLA-DR and CD86 by human dendritic cells and dampens dendritic cell-driven T cell-proliferative responses via the type I calcitonin gene-related peptide receptor. J Immunol. 2000;164(7):3494–3499. doi:10.4049/jimmunol.164.7.3494
  • Bernstein JE. Capsaicin and substance P. Clin Dermatol. 1991;9(4):497–503. doi:10.1016/0738-081x(91)90078-y
  • Mehta D, Granstein RD. Immunoregulatory effects of neuropeptides on endothelial cells: relevance to dermatological disorders. Dermatology. 2019;235(3):175–186. doi:10.1159/000496538
  • Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249–4264. doi:10.1007/s00018-016-2293-z
  • Naukkarinen A, Nickoloff BJ, Farber EM. Quantification of cutaneous sensory nerves and their substance P content in psoriasis. J Invest Dermatol. 1989;92(1):126–129. doi:10.1111/1523-1747.ep13071340
  • Remrod C, Lonne-Rahm S, Nordlind K. Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus. Arch Dermatol Res. 2007;299(2):85–91. doi:10.1007/s00403-007-0745-x
  • Marriott I, Bost KL. Expression of authentic substance P receptors in murine and human dendritic cells. J Neuroimmunol. 2001;114(1–2):131–141. doi:10.1016/s0165-5728(00)00466-5
  • Guo J, Qi C, Liu Y, et al. Terrestrosin D ameliorates skin lesions in an imiquimod-induced psoriasis-like murine model by inhibiting the interaction between Substance P and Dendritic cells. Phytomedicine. 2022;95:153864. doi:10.1016/j.phymed.2021.153864
  • Wang Y, Li P, Zhang L, et al. Stress aggravates and prolongs imiquimod-induced psoriasis-like epidermal hyperplasis and IL-1β/IL-23p40 production. J Leukoc Biol. 2020;108(1):267–281. doi:10.1002/jlb.3ma0320-363rr
  • Takashima A. Harnessing DCs by substance P. Blood. 2013;121(15):2815–2816. doi:10.1182/blood-2013-02-483354
  • Marriott I, Mason MJ, Elhofy A, Bost KL. Substance P activates NF-kappaB independent of elevations in intracellular calcium in murine macrophages and dendritic cells. J Neuroimmunol. 2000;102(2):163–171. doi:10.1016/s0165-5728(99)00182-4
  • Said SI. Vasoactive intestinal peptide. J Endocrinol Invest. 1986;9(2):191–200. doi:10.1007/bf03348097
  • Tepper SJ. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: from translational research to treatment. Headache. 2018;58(Suppl 3):238–275. doi:10.1111/head.13379
  • Ayasse MT, Buddenkotte J, Alam M, Steinhoff M. Role of neuroimmune circuits and pruritus in psoriasis. Exp Dermatol. 2020;29(4):414–426. doi:10.1111/exd.14071
  • Kakurai M, Fujita N, Murata S, Furukawa Y, Demitsu T, Nakagawa H. Vasoactive intestinal peptide regulates its receptor expression and functions of human keratinocytes via type I vasoactive intestinal peptide receptors. J Invest Dermatol. 2001;116(5):743–749. doi:10.1046/j.1523-1747.2001.01306.x
  • Lamana A, Castro-Vázquez D, de la Fuente H, et al. VIP/VPAC axis expression in immune-mediated inflammatory disorders: associated miRNA signatures. Int J Mol Sci. 2022;23(15):8578. doi:10.3390/ijms23158578
  • Chorny A, Gonzalez-Rey E, Delgado M. Regulation of dendritic cell differentiation by vasoactive intestinal peptide: therapeutic applications on autoimmunity and transplantation. Ann N Y Acad Sci. 2006;1088:187–194. doi:10.1196/annals.1366.004
  • Lu J, Zheng MH, Yan J, Chen YP, Pan JP. Effects of vasoactive intestinal peptide on phenotypic and functional maturation of dendritic cells. Int Immunopharmacol. 2008;8(10):1449–1454. doi:10.1016/j.intimp.2008.06.002
  • Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev. 2004;56(2):249–290. doi:10.1124/pr.56.2.7
  • Komiya E, Tominaga M, Kamata Y, Suga Y, Takamori K. Molecular and cellular mechanisms of itch in psoriasis. Int J Mol Sci. 2020;21(21):8406. doi:10.3390/ijms21218406
  • Narbutt J, Olejniczak I, Sobolewska-Sztychny D, et al. Narrow band ultraviolet B irradiations cause alteration in interleukin-31 serum level in psoriatic patients. Arch Dermatol Res. 2013;305(3):191–195. doi:10.1007/s00403-012-1293-6
  • Nogueira M, Puig L, Torres T. JAK Inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs. 2020;80(4):341–352. doi:10.1007/s40265-020-01261-8
  • Ellis CN, Berberian B, Sulica VI, et al. A double-blind evaluation of topical capsaicin in pruritic psoriasis. J Am Acad Dermatol. 1993;29(3):438–442. doi:10.1016/0190-9622(93)70208-b
  • Aschenbeck KA, Hordinsky MK, Kennedy WR, et al. Neuromodulatory treatment of recalcitrant plaque psoriasis with onabotulinumtoxin A. J Am Acad Dermatol. 2018;79(6):1156–1159. doi:10.1016/j.jaad.2018.07.058