356
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Tryptase and Exogenous Trypsin: Mechanisms and Ophthalmic Applications

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 927-939 | Received 28 Dec 2022, Accepted 24 Feb 2023, Published online: 02 Mar 2023

References

  • Boyer JL, Basu AK. Sulfobromophthalein liver function test in patients with portal hypertension. Indian J Med Res. 1966;54(9):858–872. doi:10.1109/PROC.1966.4891
  • Kuo IC. Corneal wound healing. Curr Opin Ophthalmol. 2004;15(4):311–315. doi:10.1097/00055735-200408000-00006
  • Zhang X, Qu MVJ, He X, et al. Dry eye management: targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. doi:10.3390/ijms18071398
  • Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: from the back to the front of the eye, and beyond. Prog Retin Eye Res. 2021;83:100916. doi:10.1016/j.preteyeres.2020.100916
  • Skaper SD, Facci L, Zusso M, An Inflammation-Centric GP. View of Neurological Disease: beyond the Neuron. Front Cell Neurosci. 2018;12:72. doi:10.3389/fncel.2018.00072
  • Konnai M, Takahashi K, Machida Y, Michishita M, Ohkusu-Tsukada K. Intrahepatic eosinophilic proliferative phlebitis in Japanese black cattle indicate allergies involving mast cell tryptase-dependent activation. Front Vet Sci. 2022;9:972180. doi:10.3389/fvets.2022.972180
  • Meher S, Mishra TS, Sasmal PK, et al. Role of Biomarkers in Diagnosis and Prognostic Evaluation of Acute Pancreatitis. J Biomark. 2015;2015:519534. doi:10.1155/2015/519534
  • Asano-Kato N, Fukagawa K, Okada N, Dogru M, Tsubota K, Fujishima H. Tryptase increases proliferative activity of human conjunctival fibroblasts through protease-activated receptor-2. Invest Ophthalmol Vis Sci. 2005;46(12):4622–4626. doi:10.1167/iovs.05-0388
  • Fan M, Wedamulla NE, Choi YJ, Zhang Q, Bae SM, Kim EK. Tenebrio molitor Larva Trypsin Hydrolysate Ameliorates Atopic Dermatitis in C57BL/6 Mice by Targeting the TLR-Mediated MyD88-Dependent MAPK Signaling Pathway. Nutrients. 2022;15:1. doi:10.3390/nu15010093
  • Ohlsson B, Yusa T, Rehfeld JF, Lundquist I, Ihse I, Axelson J. Effects of intraluminal trypsin and bile on the exocrine and endocrine pancreas after pancreaticobiliary diversion and biliodigestive shunt. Pancreas. 2000;20(2):170–176. doi:10.1097/00006676-200003000-00010
  • Cederqvist K, Janer J, Tervahartiala T, et al. Up-regulation of trypsin and mesenchymal MMP-8 during development of hyperoxic lung injury in the rat. Pediatr Res. 2006;60(4):395–400. doi:10.1203/01.pdr.0000238342.16081.f9
  • Zanotto GM, Liesbeny P, Barrett M, et al. Microfracture Augmentation With Trypsin Pretreatment and Growth Factor-Functionalized Self-assembling Peptide Hydrogel Scaffold in an Equine Model. Am J Sports Med. 2021;49(9):2498–2508. doi:10.1177/03635465211021798
  • Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol. 2020;58(3):342–365. doi:10.1007/s12016-019-08769-2
  • Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci. 2008;1143:83–104. doi:10.1196/annals.1443.023
  • Varricchi G, Rossi FW, Galdiero MR, et al. Physiological Roles of Mast Cells: collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol. 2019;179(4):247–261. doi:10.1159/000500088
  • Kroner J, Kovtun A, Kemmler J, et al. Mast Cells Are Critical Regulators of Bone Fracture-Induced Inflammation and Osteoclast Formation and Activity. J Bone Miner Res. 2017;32(12):2431–2444. doi:10.1002/jbmr.3234
  • Lind T, Gustafson AM, Calounova G, et al. Increased Bone Mass in Female Mice Lacking Mast Cell Chymase. PLoS One. 2016;11(12):e0167964. doi:10.1371/journal.pone.0167964
  • Bagher M, Larsson-Callerfelt AK, Rosmark O, Hallgren O, Bjermer L, Westergren-Thorsson G. Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun Signal. 2018;16(1):59. doi:10.1186/s12964-018-0269-3
  • Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest. 1997;99(6):1313–1321. doi:10.1172/jci119290
  • Varricchi G, Loffredo S, Galdiero MR, et al. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018;53:152–160. doi:10.1016/j.coi.2018.05.002
  • Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. 2016;39(5):397–410. doi:10.1007/s13402-016-0281-9
  • Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–478. doi:10.1038/nrm2183
  • Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. doi:10.1111/imr.12634
  • de Souza Junior DA, Borges AC, Santana AC, Oliver C, Jamur MC. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors. PLoS One. 2015;10(12):e0144081. doi:10.1371/journal.pone.0144081
  • Bingham CO 3rd, Austen KF. Mast-cell responses in the development of asthma. J Allergy Clin Immunol. 2000;105(2 Pt 2):S527–534. doi:10.1016/s0091-6749(00)90056-3
  • Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–828. doi:10.1038/nature09557
  • Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular remodeling in cancer. Oncogene. 2014;33(27):3496–3505. doi:10.1038/onc.2013.304
  • Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer. Adv Exp Med Biol. 2011;716:270–288. doi:10.1007/978-1-4419-9533-9_14
  • Tabbara KF. Tear tryptase in vernal keratoconjunctivitis. Arch Ophthalmol. 2001;119(3):338–342. doi:10.1001/archopht.119.3.338
  • Pham CT. Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol. 2008;40(6–7):1317–1333. doi:10.1016/j.biocel.2007.11.008
  • Zhao P, Lieu T, Barlow N, et al. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain. J Biol Chem. 2015;290(22):13875–13887. doi:10.1074/jbc.M115.642736
  • Graves N, Venu VP, Yipp BG, et al. A Trypsin-Sensitive Proteoglycan from the Tapeworm Hymenolepis diminuta Inhibits Murine Neutrophil Chemotaxis in vitro by Suppressing p38 MAP Kinase Activation. J Innate Immun. 2019;11(2):136–149. doi:10.1159/000492303
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–175. doi:10.1038/nri3399
  • Aragona P, Aguennouz M, Rania L, et al. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmology. 2015;122(1):62–71. doi:10.1016/j.ophtha.2014.07.048
  • Pflugfelder SC, Bian F, De Paiva C. Matrix metalloproteinase-9 in the pathophysiology and diagnosis of dry eye syndrome. Metalloproteinases Med. 2017;4:37–46.
  • Li B, Sheng M, Li J, et al. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep. 2014;4:5772. doi:10.1038/srep05772
  • Wang H, He S. Induction of lactoferrin and IL-8 release from human neutrophils by tryptic enzymes via proteinase activated receptor-2. Cell Biol Int. 2006;30(9):688–697. doi:10.1016/j.cellbi.2006.04.007
  • Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev. 2016;68(4):1110–1142. doi:10.1124/pr.115.010991
  • Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci. 2001;22(3):146–152. doi:10.1016/s0165-6147(00)01634-5
  • Lourbakos A, Potempa J, Travis J, et al. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun. 2001;69(8):5121–5130. doi:10.1128/iai.69.8.5121-5130.2001
  • Kawabata A, Kuroda R. Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol. 2000;82(3):171–174. doi:10.1254/jjp.82.171
  • Kawabata A. Physiological functions of protease-activated receptor-2. Nihon Yakurigaku Zasshi. 2003;121(6):411–420. doi:10.1254/fpj.121.411
  • Sitaras N, Rivera JC, Noueihed B, et al. Retinal neurons curb inflammation and enhance revascularization in ischemic retinopathies via proteinase-activated receptor-2. Am J Pathol. 2015;185(2):581–595. doi:10.1016/j.ajpath.2014.10.020
  • Joossen C, Baán A, Moreno-Cinos C, et al. A novel serine protease inhibitor as potential treatment for dry eye syndrome and ocular inflammation. Sci Rep. 2020;10(1):17268. doi:10.1038/s41598-020-74159-w
  • Li Q, Jie Y, Wang C, Zhang Y, Guo H, Pan Z. Tryptase compromises corneal epithelial barrier function. Cell Biochem Funct. 2014;32(2):183–187. doi:10.1002/cbf.2991
  • Safavi F, Rostami A. Role of serine proteases in inflammation: bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol. 2012;93(3):428–433. doi:10.1016/j.yexmp.2012.09.014
  • Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW. Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther. 2011;339(1):143–151. doi:10.1124/jpet.111.179697
  • Lee HM, Kim HY, Kang HJ, et al. Up-regulation of protease-activated receptor 2 in allergic rhinitis. Ann Otol Rhinol Laryngol. 2007;116(7):554–558. doi:10.1177/000348940711600712
  • Chalastras T, Nicolopoulou-Stamati P, Patsouris E, et al. Expression of substance P, vasoactive intestinal peptide and heat shock protein 70 in nasal mucosal smears of patients with allergic rhinitis: investigation using a liquid-based method. J Laryngol Otol. 2008;122(7):700–706. doi:10.1017/s0022215107001454
  • Bonini S, Schiavone M, Bonini S, et al. Efficacy of lodoxamide eye drops on mast cells and eosinophils after allergen challenge in allergic conjunctivitis. Ophthalmology. 1997;104(5):849–853. doi:10.1016/s0161-6420(97)30223-1
  • Micera A, Jirsova K, Esposito G, Balzamino BO, Di Zazzo A, Bonini S. Mast Cells Populate the Corneoscleral Limbus: new Insights for Our Understanding of Limbal Microenvironment. Invest Ophthalmol Vis Sci. 2020;61(3):43. doi:10.1167/iovs.61.3.43
  • Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA. Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol. 2016;100(5):720–726. doi:10.1136/bjophthalmol-2015-308290
  • McMenamin PG, Polla E. Mast cells are present in the choroid of the normal eye in most vertebrate classes. Vet Ophthalmol. 2013;16(Suppl 1):73–78. doi:10.1111/vop.12035
  • Iddamalgoda A, Le QT, Ito K, Tanaka K, Kojima H, Kido H. Mast cell tryptase and photoaging: possible involvement in the degradation of extra cellular matrix and basement membrane proteins. Arch Dermatol Res. 2008;300(Suppl 1):S69–76. doi:10.1007/s00403-007-0806-1
  • McLeod DS, Bhutto I, Edwards MM, Gedam M, Baldeosingh R, Lutty GA. Mast Cell-Derived Tryptase in Geographic Atrophy. Invest Ophthalmol Vis Sci. 2017;58(13):5887–5896. doi:10.1167/iovs.17-22989
  • Curcio CA, Johnson M, Huang JD, Rudolf M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res. 2010;51(3):451–467. doi:10.1194/jlr.R002238
  • Lee M, Sommerhoff CP, von Eckardstein A, Zettl F, Fritz H, Kovanen PT. Mast cell tryptase degrades HDL and blocks its function as an acceptor of cellular cholesterol. Arterioscler Thromb Vasc Biol. 2002;22(12):2086–2091. doi:10.1161/01.atv.0000041405.07367.b5
  • da Silva PS, Girol AP, Oliani SM. Mast cells modulate the inflammatory process in endotoxin-induced uveitis. Mol Vis. 2011;17:1310–1319.
  • May CA. Mast cell heterogeneity in the human uvea. Histochem Cell Biol. 1999;112(5):381–386. doi:10.1007/s004180050420
  • Fujita Y, Jin D, Mimura M, Sato Y, Takai S, Kida T. Activation of Mast-Cell-Derived Chymase in the Lacrimal Glands of Patients with IgG4-Related Ophthalmic Disease. Int J Mol Sci. 2022;23:5. doi:10.3390/ijms23052556
  • Ezzat M, Hann C, Vuk-Pavlovic S, Pulido J. Immune cells in the human choroid. Br j Ophthalmol. 2008;92(7):976–980.
  • Miller ST, Barney NP, Gamache DA, Spellman JM, Yanni JM. Secretory response of mast cells contained in monodispersed human choroidal preparations. Int Arch Allergy Immunol. 1997;114(2):139–143. doi:10.1159/000237659
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.008
  • Ramos-Llorca A, Scarpellini C, Augustyns K. Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci. 2022;23:17. doi:10.3390/ijms23179795
  • Macfarlane SR, Sloss CM, Cameron P, Kanke T, McKenzie RC, Plevin R. The role of intracellular Ca2+ in the regulation of proteinase-activated receptor-2 mediated nuclear factor kappa B signalling in keratinocytes. Br J Pharmacol. 2005;145(4):535–544. doi:10.1038/sj.bjp.0706204
  • Ribatti D, Ranieri G. Tryptase, a novel angiogenic factor stored in mast cell granules. Exp Cell Res. 2015;332(2):157–162. doi:10.1016/j.yexcr.2014.11.014
  • Chan CM, Huang JH, Chiang HS, et al. Effects of (-)-epigallocatechin gallate on RPE cell migration and adhesion. Mol Vis. 2010;16:586–595.
  • Louden C, Render JA, Carlton WW. Mast cell numbers in normal and glaucomatous canine eyes. Am J Vet Res. 1990;51(5):818–819.
  • Majji AB, Vemuganti GK, Shah VA, Singh S, Das T, Jalali S. A comparative study of epiretinal membranes associated with Eales’ disease: a clinicopathologic evaluation. Eye. 2006;20(1):46–54. doi:10.1038/sj.eye.6701788
  • Sato T, Morishita S, Horie T, et al. Involvement of premacular mast cells in the pathogenesis of macular diseases. PLoS One. 2019;14(2):e0211438. doi:10.1371/journal.pone.0211438
  • Ikeda T, Nakamura K, Oku H, et al. The role of tryptase and anti-type II collagen antibodies in the pathogenesis of idiopathic epiretinal membranes. Clin Ophthalmol. 2015;9:1181–1186. doi:10.2147/opth.S82015
  • Morishita S, Sato T, Oosuka S, et al. Expression of Lymphatic Markers in the Berger’s Space and Bursa Premacularis. Int J Mol Sci. 2021;22:4. doi:10.3390/ijms22042086
  • Maruichi M, Oku H, Takai S, et al. Measurement of activities in two different angiotensin II generating systems, chymase and angiotensin-converting enzyme, in the vitreous fluid of vitreoretinal diseases: a possible involvement of chymase in the pathogenesis of macular hole patients. Curr Eye Res. 2004;29(4–5):321–325. doi:10.1080/02713680490516161
  • Ikeda T, Nakamura K, Morishita S, et al. Decreased Presence of Mast Cells in the Bursa Premacularis of Proliferative Diabetic Retinopathy. Ophthalmic Res. 2021;64(6):1002–1012. doi:10.1159/000518438
  • Ogura S, Baldeosingh R, Bhutto IA, et al. A role for mast cells in geographic atrophy. FASEB j. 2020;34(8):10117–10131. doi:10.1096/fj.202000807R
  • Palmer HS, Kelso EB, Lockhart JC, et al. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 2007;56(11):3532–3540. doi:10.1002/art.22936
  • Weissler A, Mekori YA, Mor A. The role of mast cells in non-allergic inflammation. Isr Med Assoc J. 2008;10(12):843–845.
  • Russell FA, McDougall JJ. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res. 2009;58(3):119–126. doi:10.1007/s00011-009-8087-0
  • Vergnolle N, Bunnett NW, Sharkey KA, et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med. 2001;7(7):821–826. doi:10.1038/89945
  • Arizmendi NG, Abel M, Mihara K, et al. Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol. 2011;186(5):3164–3172. doi:10.4049/jimmunol.0903812
  • Ferrell WR, Lockhart JC, Kelso EB, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest. 2003;111(1):35–41. doi:10.1172/jci16913
  • Lohman RJ, Cotterell AJ, Barry GD, et al. An antagonist of human protease activated receptor-2 attenuates PAR2 signaling, macrophage activation, mast cell degranulation, and collagen-induced arthritis in rats. FASEB j. 2012;26(7):2877–2887. doi:10.1096/fj.11-201004
  • Suen JY, Barry GD, Lohman RJ, et al. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol. 2012;165(5):1413–1423. doi:10.1111/j.1476-5381.2011.01610.x
  • Sevigny LM, Zhang P, Bohm A, et al. Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci U S A. 2011;108(20):8491–8496. doi:10.1073/pnas.1017091108
  • Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A. 2002;99(2):643–648. doi:10.1073/pnas.022460899
  • Fala L. Zontivity (Vorapaxar), First-in-Class PAR-1 Antagonist, Receives FDA Approval for Risk Reduction of Heart Attack, Stroke, and Cardiovascular Death. Am Health Drug Benefits. 2015;8:148–151.
  • Wang YJ, Yu SJ, Tsai JJ, Yu CH, Liao EC. Antagonism of Protease Activated Receptor-2 by GB88 Reduces Inflammation Triggered by Protease Allergen Tyr-p3. Front Immunol. 2021;12:557433. doi:10.3389/fimmu.2021.557433
  • Maruyama-Fumoto K, McGuire JJ, Fairlie DP, Shinozuka K, Kagota S. Activation of protease-activated receptor 2 is associated with blood pressure regulation and proteinuria reduction in metabolic syndrome. Clin Exp Pharmacol Physiol. 2021;48(2):211–220. doi:10.1111/1440-1681.13431
  • Congreve M, Oswald C, Marshall FH. Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. Trends Pharmacol Sci. 2017;38(9):837–847. doi:10.1016/j.tips.2017.05.010
  • Schoch C. In vitro inhibition of human conjunctival mast-cell degranulation by ketotifen. J Ocul Pharmacol Ther. 2003;19(1):75–81. doi:10.1089/108076803762718132
  • Grant SM, Goa KL, Fitton A. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs. 1990;40(3):412–448. doi:10.2165/00003495-199040030-00006
  • Baba A, Tachi M, Ejima Y, et al. Anti-Allergic Drugs Tranilast and Ketotifen Dose-Dependently Exert Mast Cell-Stabilizing Properties. Cell Physiol Biochem. 2016;38(1):15–27. doi:10.1159/000438605
  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug Delivery to the Posterior Segment of the Eye: biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics. 2020;12:3. doi:10.3390/pharmaceutics12030269
  • Schopf LR, Popov AM, Enlow EM, et al. Topical Ocular Drug Delivery to the Back of the Eye by Mucus-Penetrating Particles. Transl Vis Sci Technol. 2015;4(3):11. doi:10.1167/tvst.4.3.11
  • He SH. Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol. 2004;10(3):309–318. doi:10.3748/wjg.v10.i3.309
  • Biziulevicius GA. Where do the immunostimulatory effects of oral proteolytic enzymes (‘systemic enzyme therapy’) come from? Microbial proteolysis as a possible starting point. Med Hypotheses. 2006;67(6):1386–1388. doi:10.1016/j.mehy.2006.05.051
  • Kerkhoffs GM, Struijs PA, de Wit C, Rahlfs VW, Zwipp H, van Dijk CN. A double blind, randomised, parallel group study on the efficacy and safety of treating acute lateral ankle sprain with oral hydrolytic enzymes. Br J Sports Med. 2004;38(4):431–435. doi:10.1136/bjsm.2002.004150
  • Taussig SJ, Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. J Ethnopharmacol. 1988;22(2):191–203. doi:10.1016/0378-8741(88)90127-4
  • Nouza K, Wald M. Systemic enzyme therapy: problems of resorption of enzyme macromolecules. Cas Lek Cesk. 1995;134(19):615–619.
  • Shah D, Mital K. The Role of Trypsin:Chymotrypsin in Tissue Repair. Adv Ther. 2018;35(1):31–42. doi:10.1007/s12325-017-0648-y
  • Bethune MT, Khosla C. Oral enzyme therapy for celiac sprue. Methods Enzymol. 2012;502:241–271. doi:10.1016/b978-0-12-416039-2.00013-6
  • Huijghebaert S, Vanham G, Van Winckel M, Allegaert K. Does Trypsin Oral Spray (Viruprotect(®)/ColdZyme(®)) Protect against COVID-19 and Common Colds or Induce Mutation? Caveats in Medical Device Regulations in the European Union. Int J Environ Res Public Health. 2021;18:10. doi:10.3390/ijerph18105066
  • Henrotin YE, Michlmayr C, Rau SM, Quirke AM, Bigoni M, Ueberall MA. Combination of Enzymes and Rutin to Manage Osteoarthritis Symptoms: lessons from a Narrative Review of the Literature. Rheumatol Ther. 2022;9(5):1305–1327. doi:10.1007/s40744-022-00472-7
  • Yu RL, Chen SW, Li LQ, Lin YG, Zhang FQ. Drug treatment and prognosis of community-acquired pneumonia in the elderly. Medical Frontier. 2019;9(27):2.
  • Latha BR, Jayaraman M. The efficacy of trypsin: chymotrypsin preparation in the reduction of oxidative damage during burn injury. Burns. 1998;24(6):532–538. doi:10.1016/s0305-4179(98)00066-7
  • Iohara K, Zayed M, Takei Y, Watanabe H, Nakashima M. Treatment of Pulpectomized Teeth With Trypsin Prior to Transplantation of Mobilized Dental Pulp Stem Cells Enhances Pulp Regeneration in Aged Dogs. Front Bioeng Biotechnol. 2020;8:983. doi:10.3389/fbioe.2020.00983
  • Latha B, Ramakrishnan KM, Jayaraman V, Babu M. Action of trypsin: chymotrypsin(Chymoral forte DS) preparation on acute-phase proteins following burn injury in humans. Burns. 1997;23(Suppl 1):S3–7. doi:10.1016/s0305-4179(97)
  • Brakenbury PH, Kotowski J. A comparative study of the management of ankle sprains. Br J Clin Pract. 1983;37(5):181–185.
  • Mao YL, Xu HF. Treatment and difficulty of wound. Chine J Practical Surg. 2011;31(1):3.
  • Chandanwale A, Langade D, Sonawane D, Gavai P, Randomized A. Clinical Trial to Evaluate Efficacy and Tolerability of Trypsin: chymotrypsinas Compared to Serratiopeptidase and Trypsin: bromelain:Rutosidein Wound Management. Adv Ther. 2017;34(1):180–198. doi:10.1007/s12325-016-0444-0
  • Sadeghalvad M, Mohammadi-Motlagh HR, Karaji AG, Mostafaie A. In vivo anti-inflammatory efficacy of the combined Bowman-Birk trypsin inhibitor and genistein isoflavone, two biological compounds from soybean. J Biochem Mol Toxicol. 2019;33(12):e22406. doi:10.1002/jbt.22406
  • Latha B, Ramakrishnan M, Jayaraman V, Babu M. Serum enzymatic changes modulated using trypsin: chymotrypsin preparation during burn wounds in humans. Burns. 1997;23(7–8):560–564. doi:10.1016/s0305-4179(97)90093-0
  • Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8(7):533–544. doi:10.1038/nri2356
  • Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166(12):7556–7562. doi:10.4049/jimmunol.166.12.7556
  • Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(7):588–594. doi:10.1164/rccm.200810-1534OC
  • Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11(6):427–435. doi:10.1038/nri2990
  • Naik-Mathuria B, Pilling D, Crawford JR, et al. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen. 2008;16(2):266–273. doi:10.1111/j.1524-475X.2008.00366.x
  • White MJ, Glenn M, Gomer RH. Trypsin potentiates human fibrocyte differentiation. PLoS One. 2013;8(8):e70795. doi:10.1371/journal.pone.0070795
  • Iizaka S, Sanada H, Matsui Y, et al. Serum albumin level is a limited nutritional marker for predicting wound healing in patients with pressure ulcer: two multicenter prospective cohort studies. Clin Nutr. 2011;30(6):738–745. doi:10.1016/j.clnu.2011.07.003
  • Anthony D, Rafter L, Reynolds T, Aljezawi M. An evaluation of serum albumin and the sub-scores of the Waterlow score in pressure ulcer risk assessment. J Tissue Viability. 2011;20(3):89–99. doi:10.1016/j.jtv.2011.04.001
  • Gershenfeld HK, Hershberger RJ, Shows TB, Weissman IL. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease. Proc Natl Acad Sci U S A. 1988;85(4):1184–1188. doi:10.1073/pnas.85.4.1184
  • Nhu QM, Shirey KA, Pennini ME, Stiltz J, Vogel SN. Proteinase-activated receptor 2 activation promotes an anti-inflammatory and alternatively activated phenotype in LPS-stimulated murine macrophages. Innate Immun. 2012;18(2):193–203. doi:10.1177/1753425910395044
  • Bruni M, Quarti Trevano GM, Baresi A, Bellinzoni G. A follow-up of the protein pattern after operations in patients treated with an oral enzyme. Arzneimittelforschung. 1980;30(11):1922–1925.
  • Chen XQ, Jin YY, Tang G. New Pharmacology by Chen Xinqian. 18th ed. Hubei: Chen XQ; 2018.
  • Pang B, Zhao Y. Clinical treatment and symptom outcome of conjunctivitis. World Clin Med. 2019;13(4):7–9.
  • Hu LQ, Ni LL, Zhao MY. Clinical analysis of modified retrograde lacrimal duct catheterization plus chymotrypsin irrigation in the treatment of lacrimal duct obstruction. Chine Med Sci J. 2012;2(18):214–215.