275
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Possible Future Avenues for Rheumatoid Arthritis Therapeutics: Hippo Pathway

, , , &
Pages 1283-1296 | Received 21 Jan 2023, Accepted 14 Mar 2023, Published online: 24 Mar 2023

References

  • Lubberts E. Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Curr Pharm Des. 2014;21(2):142–146. doi:10.2174/1381612820666140825122247
  • Feldmann M. Clinical research progress on the pathogenesis of rheumatoid arthritis. Clin Med. 2012;42(07):123–125.
  • Kojima F, Sekiya H, Hioki Y. Facilitation of colonic T cell immune responses is associated with an exacerbation of dextran sodium sulfate-induced colitis in mice lacking microsomal prostaglandin E synthase-1. Inflamm Regen. 2022;42:1. doi:10.1186/s41232-021-00188-1
  • Zaid T, Janse van Rensburg Helena J, Xiaolong Y. The Hippo Pathway: immunity and cancer. Cancers. 2018;10:4.
  • Yuting S, De J, Ziwei Z, et al. The critical role of the Hippo pathwayHippo pathway in kidney diseases. Front Pharmacol. 2022;13:1.
  • Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–828.
  • Hong L, Li X, Zhou D, et al. Role of Hippo signaling in regulating immunity. Cell Mol Immunol. 2018;15(12):1003–1009.
  • Geng J, Yu S, Zhao H, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of Th17 cells and Treg cells. Nat Immunol. 2017;18(7):800–812.
  • Mou F, Praskova M, Xia F, et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med. 2012;209(4):741–759.
  • Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17 / Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheumatism. 2012;64(8):2499–2503.
  • Creasy CL, Chernoff J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene. 1995;167(1–2):303–306.
  • Creasy CL, Chernoff J. Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem. 1995;270(37):21695–21700.
  • Tao WF, Zhang S, Turenchalk GS, et al. Human homologue of the drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet. 1999;21(2):177–181.
  • Bichsel SJ, Tamaskovic R, Stegert MR, Hemmings BA. Mechanism of activation of NDR (nuclear Dbf2-related) protein kinase by the hMOB1 protein. J Biol Chem. 2004;279(34):35228–35235.
  • Tapon N, Harvey KF, Bell DW, et al. Salvador promotes both cell cycle exit and apoptosis in drosophila and is mutated in human cancer cell lines. Cell. 2002;110(4):467–478.
  • Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the YES proto-oncogene product. Oncogene. 1994;9(8):2145–2152.
  • Kanai F, Marignani PA, Sarbassova D, et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 2000;19(24):6778–6791.
  • Halder G, Johnson RL. Hippo signaling: growth control and beyon. Development. 2011;138(1):9–22.
  • Pan D. The Hippo pathway in development and cancer. Dev Cell. 2010;19(4)):491–505.
  • Zhou DW, Conrad C, Xia F, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the YAP1 oncogene. Cancer Cell. 2009;16(5):425–438.
  • Zhou DW, Medoff BD, Chen LF, et al. The Nore1b/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells. Proc Natl Acad Sci USA. 2008;105(51):20321–20326.
  • Zhou DW, Zhang YY, Wu HT, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of yes-associated protein (YAP) overabundance. Proc Natl Acad Sci USA. 2011;108(49):E1312–E1320.
  • Lee KP, Lee JH, Kim TS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107(18):8248–8253.
  • Lu L, Li Y, Kim SM, et al. signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA. 2010;107(4):1437–1442.
  • Song H, Mak KK, Topol L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA. 2010;107(4):1431–1436.
  • Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–461.
  • Gao T, Zhou DW, Yang CH, et al. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology. 2013;144(7):1543–1553.e1.
  • Zhou D, Zhang Y, Wu H, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (YAP) overabundance. Proc Natl Acad Sci USA. 2011;108(49):E1312–E1320.
  • Zhang N, Bai H, David KK, et al. The Merlin /NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19(1):27–38.
  • Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–2761.
  • Hao Z, Yiran S, Jin-Jia Z, et al. Non-canonical Hippo pathway regulates immune homeostasis. J Xiamen Univ. 2021;61(03):377–386.
  • Zhou D, Medoff BD, Chen L, et al. The Nore1B /Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells. Proc Natl Acad Sci USA. 2008;105(51):20321–20326.
  • Yuan ZQ, Lehtinen MK, Merlo P, Villén J, Gygi S, Bonni A. Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem. 2009;284(17):11285–11292.
  • Geng J, Sun X, Wang P, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16(11):1142–1152.
  • Liu B, Zheng Y, Yin F, et al. Toll receptor-mediated hippo signaling controls innate immunity in Drosophila. Cell. 2016;164(3):406–419.
  • Wang S, Xie F, Chu F, et al. YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKε-mediated phosphorylation. Nat Immunol. 2017;18(7):733–743.
  • Zhang Q, Meng F, Chen S, et al. Hippo signalling governs cytosolic nucleic acid sensing through YAP / TAZ-mediated TBK1blockade. Nat Cell Biol. 2017;19(4):362–374.
  • Fallahi E, O’Driscoll NA, Matallanas D. The MST/Hippo Pathway and cell death: a non-canonical affair. Genes. 2016;7(6):28.
  • Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ. 2018;25:81–92.
  • Zhou D, Medoff BD, Chen LF, et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells. Proc Natl Acad Sci USA. 2008;105(51):20321–20326.
  • Geng J, Hong LX, Chen LF. Research progress of Hippo pathway related molecules involved in the regulation of immune cell function. Bioscience. 2017;29(9):908–915.
  • Yu-jie D, Jin-qiu L, Wen-ling L, et al. Reciprocal inhibition of YAP/TAZ and NF- κB regulates osteoarthritic cartilage degradation. Nat Commun. 2018;9(1):4564.
  • Abdollahpour H, Appaswamy G, Kotlarz D, et al. The phenotype of human STK4 deficiency. Blood. 2012;119(15):3450–3457.
  • Nehme NT, Schmid JP, Debeurme F, et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naïve T-cell survival. Blood. 2012;119(15):3458–3468.
  • Dong Y, Du X, Ye J, et al. A cell intrinsic role for Mstl in regulating thymocyte egress. J Immunol. 2009;183(6):3865–3872.
  • Du X, Shi H, Li J, et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1 / Foxo3 stability in autoimmune disease. J Immunol. 2014;192(4):1525–15 35.
  • Du XR, Shi H, Li J, et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1/Foxo3 stability in autoimmune disease. J Immunol. 2014;192(4)::1525–1535.
  • Tomiyama T, Ueda Y, Katakai T, Kondo N, Okazaki K, Kinashi T. Antigen-specific suppression and immunological synapse formation by regulatory T cells require the Mst1 kinase. PLoS One. 2013;8(9):e73874.
  • Jun-Hong L, Hu-Yue-yue L, Lan-fen C. Research progress of Hippo pathway in regulating the maintenance of immune cell homeostasis. Chin J Immunol. 2019;35(15):1793–1801.
  • Geng J, Yu SJ, Zhao H, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol. 2017;18(7):800–812.
  • Xin L, Xiong C, Liang L. Research progress on the role of Th17 cells in the pathogenesis of rheumatoid arthritis. Chin Pharmacol Bull. 2020;36(3)::309–12.
  • Feng Z, Zongshun D, Lin Y, et al. Study on the molecular mechanism of “wind, cold and damp” affecting Th17/Treg imbalance and promoting rheumatoid arthritis syndrome. J Hum Univ Trad Chin Med. 2021;41(11):1657–1662.
  • Weiqi Z, Xu L, Cheng ZY, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol. 2021;51:9.
  • Geng J, Sun XF, Wang P, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16(11):1142–1152.
  • Tomiyama T, Ueda Y, Katakai T, et al. Antigen-specific suppression and immunological synapse formation by regulatory T cells require the Mstl kinase. PLoS One. 2013;8(9):e73874.
  • Li XJ, Park ES, Park MH, et al. 3,3’-Diindolylmethane suppresses the growth of gastric cancer cells via activation of the Hippo signaling pathway. Oncol Rep. 2013;30(5):2419–2426.
  • Salojin KV, Hamman BD, Chang WC, et al. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity. PLoS One. 2014;9:e98151.
  • Chen X. The Role and Clinical Significance of TAZ in the Pathogenesis of Rheumatoid Arthritis. Xiamen University; 2019.
  • Liu L, Ji Y, Zu B, et al. Acacetin regulated the reciprocal differentiation of Th17 cells and Treg cells and mitigated the symptoms of collagen-induced arthritis in mice. Scand J Immunol. 2018;88(4):el2712.
  • Wu J, Yang XH, Ma L, et al. Effects of miR-26a-5p on apoptosis of human rheumatoid arthritis fibroblast-like synoviocytes through JAK2/STAT3 signaling pathway. J Jilin Univ. 2021;47(2):460–468.
  • Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9(1):24–33.
  • Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287–1312.
  • Bottini A, Wu DJ, Ai R, et al. PTPN14 phosphatase andYAP promote TGFβ signalling in rheumatoid synoviocytes. Ann Rheum Dis. 2019;78(5):600–609.
  • Wang Z, Lu W, Zhang Y, et al. The Hippo Pathway and viral infections. Front Microbiol. 2019;10:3033.
  • Zhang S, Chen Q, Liu Q, et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. Cancer Cell. 2017;31(5):669–684.e7.
  • Robin C, Estelle A, Guillaume C, et al. YAP/TAZ: key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response. Front Immunol. 2021;12:1.
  • Pai-Pi G. The Mechanism of GRK2 Shutting Down Hippo-YAP Signaling to Promote Abnormal Proliferation of Fibroblast-Like Synoviocytes. Anhui Medical University; 2021.
  • Sheng Q. Knockdown of YAP and TAZ Inhibit the Migration and Invasion of RA-FLS by Regulating Autophagy. Yangzhou University; 2019.
  • Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20(8)::888–899.
  • He L, Pratt H, Gao M, et al. YAP and TAZ are transcriptional co-activators of AP-1 proteins and STAT3 during breast cellular transformation. Elife. 2021;10:e67312.
  • Caire R, Audoux E, Courbon G, et al. YAP/TAZ: key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response. Front Immunol. 2021;12:1.
  • Zhou W, Shen Q, Wang H, et al. Knockdown of YAP/TAZ inhibits the migration and invasion of fibroblast synovial cells in rheumatoid arthritis by regulating autophagy. J Immunol Res. 2020;2020:1.
  • Roelofs AJ, Zupan J, Riemen AHK, et al. Joint morphogenetic cells in the adult mammalian synovium. Nat Commun. 2017;8:15040.
  • Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteo Poros Rep. 2014;12(1):9–16.
  • Okamoto K, Nakashima T, Shinohara M, et al. Osteoim munology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–1349.
  • Zhao L, Guan H, Song C, et al. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone. 2018;110:177–186.
  • Aoyama E, Kubota S, Khattab HM, et al. CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone. 2015;73:242–248.
  • Wanlei Y, Xuanyuan L, Tan Z, et al. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res. 2021;9(1):1–10.
  • Wan-lei Y, Wei-qi H, Qin A, et al. The emerging role of Hippo pathway in regulating osteoclast formation. J Cell Physiol. 2018;233(6):4606–4617.
  • Lee J, Youn BU, Kim K, et al. Mst2 controls bone homeostasis by regulating osteoclast and osteoblast differentiation. J Bone Miner Res. 2015;30(9):1597–1607.
  • Oh S, Lee D, Kim T, et al. Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Mol Cell Biol. 2009;29(23):6309–6320.
  • Feng YC. Expression and Clinical Study of Serum MST1 Kinase Level in Rheumatoid Arthritis. Lanzhou: The Second Clinical Medical College of Lanzhou University; 2019.
  • Siyu S, Xiaodong F. Clinical research progress of joint pain in systemic lupus erythematosus. Chin J Pain Med. 2016;22:141–143.
  • Zhang SD, Wang YQ, Liu YW, et al. Research progress of traditional Chinese medicine in delaying the process of bone erosion in rheumatoid arthritis. Chin J Trad Chin Med. 2021;37(2):321–325.
  • Fu SD. Advances in new target drugs for rheumatoid arthritis. Chin J Drug Eval. 2012;39(1):44–47.
  • Schoels M, Aletaha D, Smolen JS, Wong JB. Comparative effectiveness and safety of biological treatment options after tumour necrosis factor alpha inhibitor failure in rheumatoid arthritis: systematic review and indirect pairwise meta-analysis. Ann Rheum Dis. 2012;71(8):1303–1308.
  • Smolen JS, Kay J, Matteson EL, et al. Insights into the efficacy of golimumab plus methotrexate in patients with active rheumatoid arthritis who discontinued prior anti-tumour necrosis factor therapy: post-hoc analyses from the GO-AFTER study. Ann Rheum Dis. 2014;73(10):1811–1818.
  • Ruihua L, Zengyu C, Haodong X, et al. Research progress on influencing factors of bone destruction in rheumatoid arthritis. Chinese Med Guide. 2022;19(35):36–39+65.
  • Aletaha D, Smolen JS. Joint damage in rheumatoid arthritis progresses in remission according to the disease activity score in 28 joints and is driven by residual swollen joints. Arthritis Rheum. 2011;63(12):3702–3711.
  • Binder NB, Puchner A, Niederreiter B, et al. Tumor necrosis factor-inhibiting therapy preferentially targets bone destruction but not synovial inflammation in a tumor necrosis factor-driven model of rheumatoid arthritis. Arthritis Rheum. 2013;65(3):608–617.
  • Smolen JS, Han C, Bala M, et al. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 2005;52(4):1020–1030.
  • Qianwen Y, Yusong W, Fen L. Research progress on the mechanism of drugs for the treatment of rheumatoid arthritis. Chin J Med Front. 2020;12(11):4–8.
  • Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338–2348.
  • Papadaki G, Goutakoli P, Tiniakou I, et al. IL-6 signaling attenuates TNF-α production by plasmacytoid dendritic cells in rheumatoid arthritis. J Immunol. 2022;2022:1.
  • Lefeng C, Jianda M, Qianhua L, Yi D. Effect of compliance with biological agents on treatment target of rheumatoid arthritis. New Medi. 2019;50(05):313–318.