251
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Psoriasis and Leprosy: An Arcane Relationship

, , , , , ORCID Icon, , & ORCID Icon show all
Pages 2521-2533 | Received 08 Feb 2023, Accepted 18 May 2023, Published online: 14 Jun 2023

References

  • Sharma R, Singh P, McCoy RC, et al. Isolation of mycobacterium lepromatosis and development of molecular diagnostic assays to distinguish mycobacterium leprae and M. lepromatosis. Clin Infect Dis. 2020;71:e262–e269. doi:10.1093/cid/ciz1121
  • Du Toit A. Circulating leprosy in the wild. Nat Rev Microbiol. 2022;20:2. doi:10.1038/s41579-021-00653-1
  • Tomaselli PJ, Dos SD, Dos SA, et al. Primary neural leprosy: clinical, neurophysiological and pathological presentation and progression. Brain. 2022;145:1499–1506. doi:10.1093/brain/awab396
  • Maymone M, Laughter M, Venkatesh S, et al. Leprosy: clinical aspects and diagnostic techniques. J Am Acad Dermatol. 2020;83:1–14. doi:10.1016/j.jaad.2019.12.080
  • Ma F, Hughes TK, Teles R, et al. The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nat Immunol. 2021;22:839–850. doi:10.1038/s41590-021-00956-8
  • Sheikh UA, Hill C. Case Report: leprosy and Psoriasis: a Rare Coexistence. Am J Trop Med Hyg. 2020;103:206–208. doi:10.4269/ajtmh.19-0646
  • Li J, Fu X, Sun L, Xue X, Liu H, Zhang F. Case report: lepromatous leprosy and psoriasis: an uncommon coincidence. Am J Trop Med Hyg. 2023;108:317–319. doi:10.4269/ajtmh.22-0324
  • Froes LJ, Trindade M, Sotto MN. Immunology of leprosy. Int Rev Immunol. 2022;41:72–83. doi:10.1080/08830185.2020.1851370
  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Primers. 2016;2:16082. doi:10.1038/nrdp.2016.82
  • Ploemacher T, Faber WR, Menke H, Rutten V, Pieters T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis. 2020;14:e8276. doi:10.1371/journal.pntd.0008276
  • Anonymous. Global leprosy (Hansen disease) update, 2021: moving towards interruption of transmission. Week Epidemiol Rec. 2022;2022:97.
  • Bassukas ID, Gaitanis G, Hundeiker M. Leprosy and the natural selection for psoriasis. Med Hypotheses. 2012;78:183–190. doi:10.1016/j.mehy.2011.10.022
  • McFadden JP, Baker BS, Powles AV, Fry L. Psoriasis and streptococci: the natural selection of psoriasis revisited. Br J Dermatol. 2009;160:929–937. doi:10.1111/j.1365-2133.2009.09102.x
  • Nair RP, Stuart PE, Nistor I, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78:827–851. doi:10.1086/503821
  • Henseler T, Christophers E. Disease concomitance in psoriasis. J Am Acad Dermatol. 1995;32:982–986. doi:10.1016/0190-9622(95)91336-x
  • Alter A, Huong NT, Singh M, et al. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India. J Infect Dis. 2011;203:1274–1281. doi:10.1093/infdis/jir024
  • Shankarkumar U, Ghosh K, Badakere S, Mohanty D. Novel HLA Class I alleles associated with Indian leprosy patients. J Biomed Biotechnol. 2003;2003:208–211. doi:10.1155/S1110724303210019
  • Da SS, Mazini PS, Reis PG, et al. HLA-DR and HLA-DQ alleles in patients from the south of Brazil: markers for leprosy susceptibility and resistance. Bmc Infect Dis. 2009;9:134. doi:10.1186/1471-2334-9-134
  • Bloch Y, Bouchareychas L, Merceron R, et al. Structural activation of pro-inflammatory human cytokine IL-23 by cognate IL-23 receptor enables recruitment of the shared receptor IL-12Rbeta1. Immunity. 2018;48:45–58. doi:10.1016/j.immuni.2017.12.008
  • Gunter NV, Yap B, Chua C, Yap WH. Combining understanding of immunological mechanisms and genetic variants toward development of personalized medicine for psoriasis patients. Front Genet. 2019;10:395. doi:10.3389/fgene.2019.00395
  • Nakajima T, Yoshifuji H, Shimizu M, et al. A novel susceptibility locus in the IL12B region is associated with the pathophysiology of Takayasu arteritis through IL-12p40 and IL-12p70 production. Arthritis Res Ther. 2017;19:197. doi:10.1186/s13075-017-1408-8
  • Wang H, Wang C, Wang Z, et al. Identification of ZFP36L1 as an early-onset psoriasis risk gene demonstrates opposite associations with leprosy and psoriasis in the Chinese population. J Eur Acad Dermatol Venereol. 2020;34:e520–e523. doi:10.1111/jdv.16437
  • Rosenberg EW, Noah PW, Skinner RJ. Psoriasis is a visible manifestation of the skin’s defense against micro-organisms. J Dermatol. 1994;21:375–381. doi:10.1111/j.1346-8138.1994.tb01758.x
  • Zhang B, Roesner LM, Traidl S, et al. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy. 2022. doi:10.1111/all.15486
  • Puig L, Costanzo A, Munoz-Elias EJ, et al. The biological basis of disease recurrence in psoriasis: a historical perspective and current models. Br J Dermatol. 2022;186:773–781. doi:10.1111/bjd.20963
  • Griffiths C, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet. 2021;397:1301–1315. doi:10.1016/S0140-6736(20)32549-6
  • Attia EA, Abdallah M, El-Khateeb E, et al. Serum Th17 cytokines in leprosy: correlation with circulating CD4(+) CD25 (high)FoxP3 (+) T-regs cells, as well as down regulatory cytokines. Arch Dermatol Res. 2014;306:793–801. doi:10.1007/s00403-014-1486-2
  • Pai VV, Kikkeri NN, Athanikar SB, Rao R. Psoriasis and leprosy: a mystifying coexistence. Cutis. 2013;92:E3–E4.
  • Rodrigues JI, Gresta LT, Noviello ML, Cartelle CT, Lyon S, Arantes RM. Leprosy classification methods: a comparative study in a referral center in Brazil. Int J Infect Dis. 2016;45:118–122. doi:10.1016/j.ijid.2016.02.018
  • Ghoreschi K, Balato A, Enerback C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397:754–766. doi:10.1016/S0140-6736(21)00184-7
  • Ha HL, Wang H, Claudio E, Tang W, Siebenlist U. IL-20-receptor signaling delimits IL-17 production in psoriatic inflammation. J Invest Dermatol. 2020;140:143–151. doi:10.1016/j.jid.2019.06.127
  • Johnston A, Xing X, Guzman AM, et al. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J Immunol. 2011;186:2613–2622. doi:10.4049/jimmunol.1003162
  • Ouyang W, O’Garra A. IL-10 Family Cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity. 2019;50:871–891. doi:10.1016/j.immuni.2019.03.020
  • Bai L, Fang H, Xia S, et al. STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochem Biophys Res Commun. 2018;501:563–569. doi:10.1016/j.bbrc.2018.05.042
  • Michiels C, Puigdevall L, Cochez P, et al. A targetable, noncanonical signal transducer and activator of transcription 3 activation Induced by the Y-less region of IL-22 receptor orchestrates imiquimod-induced psoriasis-like dermatitis in mice. J Invest Dermatol. 2021;141:2668–2678. doi:10.1016/j.jid.2021.04.016
  • Santos MB, de Oliveira DT, Cazzaniga RA, et al. Distinct roles of Th17 and Th1 cells in inflammatory responses associated with the presentation of paucibacillary leprosy and leprosy reactions. Scand J Immunol. 2017;86:40–49. doi:10.1111/sji.12558
  • de Lima SE, de Sousa JR, de Sousa AT, et al. New immunologic pathways in the pathogenesis of leprosy: role for Th22 cytokines in the polar forms of the disease. J Am Acad Dermatol. 2015;72:729–730. doi:10.1016/j.jaad.2014.11.023
  • Navrazhina K, Renert-Yuval Y, Frew JW, et al. Large-scale serum analysis identifies unique systemic biomarkers in psoriasis and hidradenitis suppurativa. Br J Dermatol. 2022;186:684–693. doi:10.1111/bjd.20642
  • Abdel HR, Samir N, Safwat M, Rashed L, Soliman M. Tissue lipocalin-2 in psoriasis: is it a marker of metabolic disturbance or a possible marker of therapeutic efficacy after narrow band ultraviolet B? J Dermatolog Treat. 2020;31:519–523. doi:10.1080/09546634.2019.1605141
  • Hau CS, Kanda N, Tada Y, et al. Lipocalin-2 exacerbates psoriasiform skin inflammation by augmenting T-helper 17 response. J Dermatol. 2016;43:785–794. doi:10.1111/1346-8138.13227
  • Wang H, Xu Y, Jin M, Li H, Li S. miR-383 reduces keratinocyte proliferation and induces the apoptosis in psoriasis via disruption of LCN2-dependent JAK/STAT pathway activation. Int Immunopharmacol. 2021;96:107587. doi:10.1016/j.intimp.2021.107587
  • Dahl SL, Woodworth JS, Lerche CJ, et al. Lipocalin-2 Functions as Inhibitor of Innate Resistance to Mycobacterium tuberculosis. Front Immunol. 2018;9:2717. doi:10.3389/fimmu.2018.02717
  • Simoes QJ, de Almeida FA, de Souza AT, et al. Transforming growth factor beta and apoptosis in leprosy skin lesions: possible relationship with the control of the tissue immune response in the Mycobacterium leprae infection. Microbes Infect. 2012;14:696–701. doi:10.1016/j.micinf.2012.02.010
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi:10.1002/jcp.26429
  • Whitworth LJ, Troll R, Pagan AJ, et al. Elevated cerebrospinal fluid cytokine levels in tuberculous meningitis predict survival in response to dexamethasone. Proc Natl Acad Sci U S A. 2021:118. doi:10.1073/pnas.2024852118
  • Lydakis C, Ioannidou D, Koumpa I, et al. Development of lepromatous leprosy following etanercept treatment for arthritis. Clin Rheumatol. 2012;31:395–398. doi:10.1007/s10067-011-1903-2
  • Mazloom SE, Yan D, Hu JZ, et al. TNF-alpha inhibitor-induced psoriasis: a decade of experience at the Cleveland Clinic. J Am Acad Dermatol. 2020;83:1590–1598. doi:10.1016/j.jaad.2018.12.018
  • Lu X, Nagata M, Yamasaki SM. 20 years of a versatile sensor of insults. Int Immunol. 2018;30:233–239. doi:10.1093/intimm/dxy028
  • Lee WB, Kang JS, Choi WY, et al. Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution. Nat Commun. 2016;7:11322. doi:10.1038/ncomms11322
  • Dube JY, McIntosh F, Behr MA. Mice dually disrupted for nod2 and mincle manifest early bacteriological control but late susceptibility during mycobacterium tuberculosis infection. Front Immunol. 2022;13:862992. doi:10.3389/fimmu.2022.862992
  • Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy. 2020;16:1021–1043. doi:10.1080/15548627.2019.1658436
  • Ulland TK, Song WM, Huang SC, et al. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell. 2017;170:649–663. doi:10.1016/j.cell.2017.07.023
  • Jaitin DA, Adlung L, Thaiss CA, Weiner A, Amit I. Lipid-associated macrophages control metabolic homeostasis in a trem2-dependent manner. Cell. 2019;2019:178.
  • Iizasa E, Chuma Y, Uematsu T, et al. TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun. 2021;12:2299. doi:10.1038/s41467-021-22620-3
  • Frenzel DF, Borkner L, Scheurmann J, Singh K, Scharffetter-Kochanek K, Weiss JM. Osteopontin deficiency affects imiquimod-induced psoriasis-like murine skin inflammation and lymphocyte distribution in skin, draining lymph nodes and spleen. Exp Dermatol. 2015;24:305–307. doi:10.1111/exd.12649
  • Hattori T, Iwasaki-Hozumi H, Bai G, et al. Both full-length and protease-cleaved products of osteopontin are elevated in infectious diseases. Biomedicines. 2021;9:1006. doi:10.3390/biomedicines9081006