240
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

TSG6 Plays a Role in Improving Orbital Inflammatory Infiltration and Extracellular Matrix Accumulation in TAO Model Mice

, ORCID Icon, , ORCID Icon, , & show all
Pages 1937-1948 | Received 20 Feb 2023, Accepted 21 Apr 2023, Published online: 04 May 2023

References

  • Bahn RS. Graves ophthalmopathy. N Engl J Med. 2010;362(8):726–738. doi:10.1056/NEJMra0905750
  • Ing EB, Madjedi K, Hurwitz JJ, Nijhawan N, Oestreicher J, Torun N. Nomenclature: thyroid-associated orbitopathy, graves ophthalmopathy, or thyroid eye disease? Can J Ophthalmol. 2021;56(1):e22–e24. doi:10.1016/j.jcjo.2020.06.004
  • Smith TJ, Janssen JAMJ. Insulin-like growth factor-i receptor and thyroid-associated ophthalmopathy. Endocr Rev. 2019;40:953–958. doi:10.1210/er.2018-00066
  • Rotondo Dottore G, Torregrossa L, Caturegli P, et al. Association of T and B cells infiltrating orbital tissues with clinical features of graves orbitopathy. Jama Ophthalmol. 2018;136:613. doi:10.1001/jamaophthalmol.2018.0806
  • Taylor PN, Zhang L, Lee R, et al. New insights into the pathogenesis and nonsurgical management of graves orbitopathy. Nat Rev Endocrinol. 2020;16(2):104–116. doi:10.1038/s41574-019-0305-4
  • Smith TJ. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat Rev Endocrinol. 2015;11:171–181.
  • Moshkelgosha S, So P, Deasy N, Diaz-Cano S, Banga JP. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of graves’ orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology. 2013;154:3008–3015. doi:10.1210/en.2013-1576
  • Zhang M, Ding X, Wu L, et al. A promising mouse model of graves’ orbitopathy induced by adenovirus expressing thyrotropin receptor a subunit. Thyroid. 2021;31:638–648. doi:10.1089/thy.2020.0088
  • Bartalena L, Kahaly GJ, Baldeschi L, et al. The 2021 European group on graves’ orbitopathy (eugogo) clinical practice guidelines for the medical management of graves’ orbitopathy. Pract Guideline. 2021;185(4):G43–G67.
  • Day AJ. CMM. TSG-6: a multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol. 2019;78–79:60–83. doi:10.1016/j.matbio.2018.01.011
  • Brandau S, Bruderek K, Hestermann K, et al. Orbital fibroblasts from graves’ orbitopathy patients share functional and immunophenotypic properties with mesenchymal stem/stromal cells. Invest Ophthalmol Vis Sci. 2015;56(11):6549–6557. doi:10.1167/iovs.15-16610
  • Kozdon K, Fitchett C, Rose GE, Ezra DG, Bailly M. Mesenchymal stem cell-like properties of orbital fibroblasts in graves’ orbitopathy. Invest Ophth Vis Sci. 2015;56:5743–5750. doi:10.1167/iovs.15-16580
  • Park M, Banga JP, Kim GJ, Kim M, Lew H. Human placenta-derived mesenchymal stem cells ameliorate orbital adipogenesis in female mice models of graves’ ophthalmopathy. Stem Cell Res Ther. 2019;10(1):246. doi:10.1186/s13287-019-1348-0
  • Kim JY, Park S, Lee H, Lew H, Kim GJ. Functionally enhanced placenta-derived mesenchymal stem cells inhibit adipogenesis in orbital fibroblasts with graves’ ophthalmopathy. Stem Cell Res Ther. 2020;11(1):469. doi:10.1186/s13287-020-01982-3
  • Wang M, Zhang M, Fu L, et al. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics. 2020;10(1):36–49. doi:10.7150/thno.37301
  • Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci. 2003;116(10):1863–1873. doi:10.1242/jcs.00407
  • Li C, Li X, Shi Z, et al. Exosomes from LPS-preconditioned bone marrow MSCs accelerated peripheral nerve regeneration via M2 macrophage polarization: involvement of TSG-6/NF-κB/NLRP3 signaling pathway. Exp Neurol. 2022;356:114139. doi:10.1016/j.expneurol.2022.114139
  • Bayliss MT, Howat SLT, Dudhia J, et al. Up-regulation and differential expression of the hyaluronan-binding protein TSG-6 in cartilage and synovium in rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage. 2001;9(1):42–48. doi:10.1053/joca.2000.0348
  • Guo P, Zhang S, He H, Zhu Y, Tseng SCG. TSG-6 controls transcription and activation of matrix metalloproteinase 1 in conjunctivochalasis. Invest Ophthalmol Vis Sci. 2012;53:1372–1380. doi:10.1167/iovs.11-8738
  • Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, Phase 1/2a, randomized controlled trial. Stem Cell Transl Med. 2021;10(5):660–673. doi:10.1002/sctm.20-0472
  • Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020;11:1912.
  • Petrou P, Kassis I, Levin N, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020;143(12):3574–3588. doi:10.1093/brain/awaa333
  • Prockop DJ, Youn OJ. Mesenchymal Stem/Stromal Cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20. doi:10.1038/mt.2011.211
  • Zhang S, Fang J, Liu Z, et al. Inflammatory cytokines-stimulated human muscle stem cells ameliorate ulcerative colitis via the IDO-TSG6 axis. Stem Cell Res Ther. 2021:12. doi:10.1186/s13287-020-02065-z
  • Song HB, Park SY, Ko JH, et al. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Mol Ther. 2018;26(1):162–172. doi:10.1016/j.ymthe.2017.09.026
  • Gianoukakis AG, Khadavi N, Smith TJ. Cytokines, graves’ disease, and thyroid-associated ophthalmopathy. Thyroid. 2008;18(9):953–958. doi:10.1089/thy.2007.0405
  • Łacheta D, Miśkiewicz P, Głuszko A, et al. Immunological aspects of graves’ ophthalmopathy. Biomed Res Int. 2019;2019:7453212–7453260. doi:10.1155/2019/7453260
  • Zheng J, Duan H, You S, Liang B, Chen Y, Huang H. Research progress on the pathogenesis of graves’ ophthalmopathy: based on immunity, noncoding RNA and exosomes. Front Immunol. 2022;13:1.
  • Zhang M, Jiang W, Lu G, Wang R, Lv Z, Li D. Insight into mouse models of hyperthyroidism. Front Endocrinol. 2022;13:929750.
  • Görtz GE, Philipp S, Bruderek K, et al. Macrophage-orbital fibroblast interaction and hypoxia promote inflammation and adipogenesis in graves’ orbitopathy. Endocrinology. 2022;164(2):203. doi:10.1210/endocr/bqac203
  • Chen MH, Chen MH, Liao SL, et al. Role of macrophage infiltration in the orbital fat of patients with graves’ ophthalmopathy. Clin Endocrinol. 2008;69(2):332–337. doi:10.1111/j.1365-2265.2008.03219.x
  • Bardos T, Kamath RV, Mikecz K, Glant TT. Anti-inflammatory and chondroprotective effect of TSG-6 (tumor necrosis factor-alpha-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol. 2001;159:1711–1721. doi:10.1016/S0002-9440(10)63018-0
  • Oh JY, Roddy GW, Choi H, et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci. 2010;107(39):16875–16880. doi:10.1073/pnas.1012451107
  • Song W, Li Q, Ryu M, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. Stem Cell Res Ther. 2018;9(1). doi:10.1186/s13287-018-0841-1
  • Ding Y, Gong P, Jiang J, et al. Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis. Cell Death Dis. 2022;13(11):996. doi:10.1038/s41419-022-05445-w
  • Salvi M, Vannucchi G, Currò N, et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe graves’ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab. 2015;100(2):422–431. doi:10.1210/jc.2014-3014
  • Sánchez-Bilbao L, Martínez-López D, Revenga M, et al. Anti-IL-6 receptor tocilizumab in refractory graves’ orbitopathy: national multicenter observational study of 48 patients. J Clin Med. 2020;9(9):2816. doi:10.3390/jcm9092816
  • Douglas RS, Kahaly GJ, Ugradar S, et al. Teprotumumab efficacy, safety, and durability in longer-duration thyroid eye disease and re-treatment. Ophthalmology. 2022;129(4):438–449. doi:10.1016/j.ophtha.2021.10.017
  • Diana T, Ungerer M, Wüster C, et al. A cyclic peptide significantly improves thyroid function, thyrotropin-receptor antibodies and orbital mucine /collagen content in a long-term graves’ disease mouse model. J Autoimmun. 2021;122:102666. doi:10.1016/j.jaut.2021.102666
  • Plöhn S, Hose M, Schlüter A, et al. Fingolimod improves the outcome of experimental graves’ disease and associated orbitopathy by modulating the autoimmune response to the thyroid-stimulating hormone receptor. Thyroid. 2019;29:1286–1301. doi:10.1089/thy.2018.0754