235
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Omarigliptin Protects the Integrity of the Blood–Brain Barrier After Intracerebral Hemorrhage in Mice

, , , &
Pages 2535-2548 | Received 03 Mar 2023, Accepted 10 Jun 2023, Published online: 15 Jun 2023

References

  • Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation. 2020;141:e139–e596.
  • Zhang Y, Khan S, Liu Y, Wu G, Yong V, Xue M. Oxidative stress following intracerebral hemorrhage: from molecular mechanisms to therapeutic targets. Front Immunol. 2022;13:847246. doi:10.3389/fimmu.2022.847246
  • Wang F, Zhang X, Liu Y, et al. Neuroprotection by ozanimod following intracerebral hemorrhage in mice. Front Mol Neurosci. 2022;15:927150. doi:10.3389/fnmol.2022.927150
  • Zhang X, Zhang Y, Wang F, Liu Y, Yong VW, Xue M. Necrosulfonamide alleviates acute brain injury of intracerebral hemorrhage via inhibiting inflammation and necroptosis. Front Mol Neurosci. 2022;15:916249.
  • Liu Y, Bai Q, Yong VW, Xue M. Emmprin promotes the expression of mmp-9 and exacerbates neurological dysfunction in a mouse model of intracerebral hemorrhage. Neurochem Res. 2022;47(8):2383–2395. doi:10.1007/s11064-022-03630-z
  • Sheth KN, Ropper AH. Spontaneous intracerebral hemorrhage. N Engl J Med. 2022;387(17):1589–1596. doi:10.1056/NEJMra2201449
  • Keep RF, Andjelkovic AV, Xiang J, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018;38(8):1255–1275. doi:10.1177/0271678X18774666
  • Chen S, Li L, Peng C, et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage. Antioxid Redox Signal. 2022;37(1–3):115–134. doi:10.1089/ars.2021.0072
  • Liu Y, Wang F, Li Z, Mu Y, Yong VW, Xue M. Neuroprotective effects of chlorogenic acid in a mouse model of intracerebral hemorrhage associated with reduced extracellular matrix metalloproteinase inducer. Biomolecules. 2022;12(8):1020. doi:10.3390/biom12081020
  • Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol. 2022;13:1032343.
  • Zhang Y, Zhang X, Wee YV, Xue M. Vildagliptin improves neurological function by inhibiting apoptosis and ferroptosis following intracerebral hemorrhage in mice. Neurosci Lett. 2022;776:136579. doi:10.1016/j.neulet.2022.136579
  • Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of cd26/dipeptidyl peptidase 4 and its inhibitors in disorders of the cns - a critical overview. Rev Neurosci. 2023;34(1):1–24. doi:10.1515/revneuro-2022-0026
  • Houthuijzen JM, de Bruijn R, van der Burg E, et al. Cd26-negative and cd26-positive tissue-resident fibroblasts contribute to functionally distinct caf subpopulations in breast cancer. Nat Commun. 2023;14(1):183. doi:10.1038/s41467-023-35793-w
  • Shao Z, Li X, Xu X, Chen P. DPP-4 inhibitor linagliptin ameliorates imiquimod-induced psoriasis-like skin alterations in type 2 diabetic mice by inhibiting the MAPK/NF-kappaB inflammatory pathway. Drug Dev Res. 2022;83:1373–1382. doi:10.1002/ddr.21966
  • Nimlamool W, Andrews RM, Falk MM. Connexin43 phosphorylation by PKC and MAPK signals VEGF-mediated gap junction internalization. Mol Biol Cell. 2015;26:2755–2768. doi:10.1091/mbc.E14-06-1105
  • Fan SH, Xiong QF, Wang L, Zhang LH, Shi YW. Glucagon-like peptide 1 treatment reverses vascular remodelling by downregulating matrix metalloproteinase 1 expression through inhibition of the erk1/2/nf-kappab signalling pathway. Mol Cell Endocrinol. 2020;518:111005. doi:10.1016/j.mce.2020.111005
  • Biftu T, Sinha-Roy R, Chen P, et al. Omarigliptin (mk-3102): a novel long-acting dpp-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem. 2014;57:3205–3212. doi:10.1021/jm401992e
  • Du H, Wang S. Omarigliptin mitigates lipopolysaccharide-induced neuroinflammation and dysfunction of the integrity of the blood-brain barrier. ACS Chem Neurosci. 2020;11:4262–4269. doi:10.1021/acschemneuro.0c00537
  • Xue M, Del BM. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett. 2000;283:230–232. doi:10.1016/S0304-3940(00)00971-X
  • Festing MFW, Altm DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244–258. doi:10.1093/ilar.43.4.244
  • Ayoub BM, Mowaka S, Safar MM, et al. Repositioning of omarigliptin as a once-weekly intranasal anti-parkinsonian agent. Sci Rep. 2018;8:8959. doi:10.1038/s41598-018-27395-0
  • Liu Y, Li Z, Khan S, et al. Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neurosci Lett. 2021;764:136297. doi:10.1016/j.neulet.2021.136297
  • Li Z, Liu Y, Wei R, Khan S, Xue M, Yong VW. The combination of deferoxamine and minocycline strengthens neuroprotective effect on acute intracerebral hemorrhage in rats. Neurol Res. 2021;43(10):854–864. doi:10.1080/01616412.2021.1939487
  • Wu D, Lai N, Deng R, et al. Activated wnk3 induced by intracerebral hemorrhage deteriorates brain injury maybe via wnk3/spak/nkcc1 pathway. Exp Neurol. 2020;332:113386. doi:10.1016/j.expneurol.2020.113386
  • Xie RX, Li DW, Liu XC, et al. Carnosine attenuates brain oxidative stress and apoptosis after intracerebral hemorrhage in rats. Neurochem Res. 2017;42:541–551. doi:10.1007/s11064-016-2104-9
  • Ma Q, Huang B, Khatibi N, et al. Pdgfr-alpha inhibition preserves blood-brain barrier after intracerebral hemorrhage. Ann Neurol. 2011;70:920–931. doi:10.1002/ana.22549
  • Jia P, He J, Li Z, et al. Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion. Front Cell Neurosci. 2021;15:699736. doi:10.3389/fncel.2021.699736
  • Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol. 2010;176:1193–1202. doi:10.2353/ajpath.2010.090361
  • Yu H, Cao X, Li W, et al. Targeting connexin 43 provides anti-inflammatory effects after intracerebral hemorrhage injury by regulating yap signaling. J Neuroinflammation. 2020;17(1):322. doi:10.1186/s12974-020-01978-z
  • Magid J, Girard R, Polster S, et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res. 2022;130(8):1204–1229. doi:10.1161/CIRCRESAHA.121.319949
  • Zhang Y, Khan S, Liu Y, et al. Modes of brain cell death following intracerebral hemorrhage. Front Cell Neurosci. 2022;16:799753. doi:10.3389/fncel.2022.799753
  • Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain. 2020;143(5):1297–1314. doi:10.1093/brain/awz393
  • Urday S, Beslow LA, Dai F, et al. Rate of perihematomal edema expansion predicts outcome after intracerebral hemorrhage. Crit Care Med. 2016;44:790–797. doi:10.1097/CCM.0000000000001553
  • Murthy SB, Moradiya Y, Dawson J, Lees KR, Hanley DF, Ziai WC. Perihematomal edema and functional outcomes in intracerebral hemorrhage: influence of hematoma volume and location. Stroke. 2015;46(11):3088–3092. doi:10.1161/STROKEAHA.115.010054
  • Ghersi G, Zhao Q, Salamone M, Yeh Y, Zucker S, Chen WT. The protease complex consisting of dipeptidyl peptidase iv and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res. 2006;66:4652–4661. doi:10.1158/0008-5472.CAN-05-1245
  • Zeng X, Li X, Chen Z, Yao Q. Dpp-4 inhibitor saxagliptin ameliorates oxygen deprivation/reoxygenation-induced brain endothelial injury. Am J Transl Res. 2019;11:6316–6325.
  • Yip HK, Lee MS, Li YC, et al. Dipeptidyl peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute hemorrhagic stroke. Int J Biol Sci. 2020;16(16):3116–3132. doi:10.7150/ijbs.42677
  • Michel HE, Tadros MM, Hendy MS, Mowaka S, Ayoub BM. Omarigliptin attenuates rotenone-induced Parkinson’s disease in rats: possible role of oxidative stress, endoplasmic reticulum stress and immune modulation. Food Chem Toxicol. 2022;164:113015.
  • Chiazza F, Tammen H, Pintana H, et al. The effect of dpp-4 inhibition to improve functional outcome after stroke is mediated by the sdf-1alpha/cxcr4 pathway. Cardiovasc Diabetol. 2018;17(1):60. doi:10.1186/s12933-018-0702-3
  • Nadeau CA, Dietrich K, Wilkinson CM, et al. Prolonged blood-brain barrier injury occurs after experimental intracerebral hemorrhage and is not acutely associated with additional bleeding. Transl Stroke Res. 2019;10:287–297. doi:10.1007/s12975-018-0636-9
  • Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol. 2020;19(12):1023–1032. doi:10.1016/S1474-4422(20)30364-1
  • Moxon-Emre I, Schlichter LC. Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol. 2011;70(3):218–235. doi:10.1097/NEN.0b013e31820d94a5
  • Wang T, Chen X, Wang Z, et al. Poloxamer-188 can attenuate blood-brain barrier damage to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci. 2015;55:240–250. doi:10.1007/s12031-014-0313-8
  • Li H, Sheng Z, Khan S, et al. Matrix metalloproteinase-9 as an important contributor to the pathophysiology of depression. Front Neurol. 2022;13:861843. doi:10.3389/fneur.2022.861843
  • Zhang Y, Khan S, Liu Y, et al. Gap junctions and hemichannels composed of connexins and pannexins mediate the secondary brain injury following intracerebral hemorrhage. Biology. 2022;11:27. doi:10.3390/biology11010027
  • Li X, Meng C, Han F, et al. Vildagliptin attenuates myocardial dysfunction and restores autophagy via mir-21/spry1/erk in diabetic mice heart. Front Pharmacol. 2021;12:634365. doi:10.3389/fphar.2021.634365
  • Zheng Y, Hu Q, Manaenko A, et al. 17β-estradiol attenuates hematoma expansion through estrogen receptor α/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke. 2015;46(2):485–491. doi:10.1161/STROKEAHA.114.006372