210
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Non-Coding RNAs Regulate Spinal Cord Injury-Related Neuropathic Pain via Neuroinflammation

, , ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages 2477-2489 | Received 20 Mar 2023, Accepted 02 Jun 2023, Published online: 13 Jun 2023

References

  • Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533. doi:10.3390/ijms21207533
  • Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord. 2017;55(12):1046–1050. doi:10.1038/sc.2017.70
  • Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100–1109. doi:10.1038/s41590-019-0433-y
  • Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine. 2001;26(24 Suppl):S146–60. doi:10.1097/00007632-200112151-00024
  • Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur J Pain. 2017;21(1):29–44. doi:10.1002/ejp.905
  • Widerstrom-Noga EG, Turk DC. Types and effectiveness of treatments used by people with chronic pain associated with spinal cord injuries: influence of pain and psychosocial characteristics. Spinal Cord. 2003;41(11):600–609. doi:10.1038/sj.sc.3101511
  • Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol. 2014;258:48–61. doi:10.1016/j.expneurol.2014.02.001
  • Brooks TA, Hawkins BT, Huber JD, Egleton RD, Davis TP. Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations. Am J Physiol Heart Circ Physiol. 2005;289(2):H738–43. doi:10.1152/ajpheart.01288.2004
  • Beggs S, Liu XJ, Kwan C, Salter MW. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol Pain. 2010;6:74. doi:10.1186/1744-8069-6-74
  • Haroon F, Drogemuller K, Handel U, et al. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol. 2011;186(11):6521–6531. doi:10.4049/jimmunol.1001135
  • Yoshizaki A, Miyagaki T, DiLillo DJ, et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature. 2012;491(7423):264–268. doi:10.1038/nature11501
  • Francos-Quijorna I, Amo-Aparicio J, Martinez-Muriana A, Lopez-Vales R. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 2016;64(12):2079–2092. doi:10.1002/glia.23041
  • Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation. 2014;11:150. doi:10.1186/s12974-014-0150-2
  • Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig. 2016;7(1):17–26. doi:10.1111/jdi.12379
  • Detloff MR, Fisher LC, McGaughy V, Longbrake EE, Popovich PG, Basso DM. Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp Neurol. 2008;212(2):337–347. doi:10.1016/j.expneurol.2008.04.009
  • Gordh T, Chu H, Sharma HS. Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain. 2006;124(1–2):211–221. doi:10.1016/j.pain.2006.05.020
  • Joyce A, DeLeo RPY. The role of neuroinflammation and neuroimmune activation in persistent pain. PAIN. 2001;90(2001):16. doi:10.1016/s0304-3959(00)00490-5
  • Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450–455. doi:10.1016/s0166-2236(00)01854-3
  • Xanthos DN, Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53. doi:10.1038/nrn3617
  • Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia. 2014;62(12):2044–2060. doi:10.1002/glia.22725
  • Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: a narrative review. J Clin Lab Anal. 2022;36(8):e24592. doi:10.1002/jcla.24592
  • Ma X, Wang X, Ma X, et al. An update on the roles of circular RNAs in spinal cord injury. Mol Neurobiol. 2022;59(4):2620–2628. doi:10.1007/s12035-021-02721-2
  • Wang F, Liu J, Wang X, et al. The Emerging Role of lncRNAs in Spinal Cord Injury. Biomed Res Int. 2019;2019:3467121. doi:10.1155/2019/3467121
  • Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST. MicroRNAs Key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem. 2016;23:3528–3546. doi:10.2174/0929867323666160814001040
  • Burke D, Lennon O, Fullen BM. Quality of life after spinal cord injury: the impact of pain. Eur J Pain. 2018;22(9):1662–1672. doi:10.1002/ejp.1248
  • Crul TC, Post MWM, Visser-Meily JMA, Stolwijk-Swuste JM. Prevalence and Determinants of Pain in Spinal Cord Injury During Initial Inpatient Rehabilitation: data From the Dutch Spinal Cord Injury Database. Arch Phys Med Rehabil. 2022. doi:10.1016/j.apmr.2022.07.005
  • Felix ER, Cardenas DD, Bryce TN, et al. Prevalence and Impact of Neuropathic and Nonneuropathic Pain in Chronic Spinal Cord Injury. Arch Phys Med Rehabil. 2022;103(4):729–737. doi:10.1016/j.apmr.2021.06.022
  • Khazaeipour Z, Ahmadipour E, Rahimi-Movaghar V, Ahmadipour F, Vaccaro AR, Babakhani B. Association of pain, social support and socioeconomic indicators in patients with spinal cord injury in Iran. Spinal Cord. 2017;55(2):180–186. doi:10.1038/sc.2016.160
  • Mann R, Schaefer C, Sadosky A, et al. Burden of spinal cord injury-related neuropathic pain in the United States: retrospective chart review and cross-sectional survey. Spinal Cord. 2013;51(7):564–570. doi:10.1038/sc.2013.34
  • Muller R, Brinkhof MW, Arnet U, et al. Prevalence and associated factors of pain in the Swiss spinal cord injury population. Spinal Cord. 2017;55(4):346–354. doi:10.1038/sc.2016.157
  • Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord. 2000;38(10):611–614. doi:10.1038/sj.sc.3101073
  • Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103(3):249–257. doi:10.1016/s0304-3959(02)00452-9
  • Widerstrom-Noga EG, Felipe-Cuervo E, Yezierski RP. Chronic pain after spinal injury: interference with sleep and daily activities. Arch Phys Med Rehabil. 2001;82(11):1571–1577. doi:10.1053/apmr.2001.26068
  • Wollaars MM, Post MW, van Asbeck FW, Brand N. Spinal cord injury pain: the influence of psychological factors and impact on quality of life. Clin J Pain. 2007;23(5):383–391. doi:10.1097/AJP.0b013e31804463e5
  • Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord. 2009;47(5):352–359. doi:10.1038/sc.2008.136
  • Stampacchia G, Gerini A, Morganti R, et al. Pain characteristics in Italian people with spinal cord injury: a multicentre study. Spinal Cord. 2022;60(7):604–611. doi:10.1038/s41393-021-00656-y
  • van Gorp S, Kessels AG, Joosten EA, van Kleef M, Patijn J. Pain prevalence and its determinants after spinal cord injury: a systematic review. Eur J Pain. 2015;19(1):5–14. doi:10.1002/ejp.522
  • Cardenas DD, Felix ER. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R. 2009;1(12):1077–1090. doi:10.1016/j.pmrj.2009.07.002
  • Masri R, Keller A. Chronic pain following spinal cord injury. Adv Exp Med Biol. 2012;760:74–88. doi:10.1007/978-1-4614-4090-1_5
  • Chen J, Weidner N, Puttagunta R. The Impact of Activity-Based Interventions on Neuropathic Pain in Experimental Spinal Cord Injury. Cells. 2022;11(19). doi:10.3390/cells11193087
  • Finnerup NB, Norrbrink C, Trok K, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014;15(1):40–48. doi:10.1016/j.jpain.2013.09.008
  • Attal N. Spinal cord injury pain. Rev Neurol (Paris). 2021;177(5):606–612. doi:10.1016/j.neurol.2020.07.003
  • Nakipoglu-Yüzer GF, Nermin Atçı N, Ozgirgin N. Neuropathic pain in spinal cord injury. Pain Physician. 2013;16:259–264.
  • Rosner J, Negraeff M, Belanger LM, et al. Characterization of Hyperacute Neuropathic Pain after Spinal Cord Injury: a Prospective Study. J Pain. 2022;23(1):89–97. doi:10.1016/j.jpain.2021.06.013
  • Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: a mechanistic review. Biomed Pharmacother. 2021;139:111563. doi:10.1016/j.biopha.2021.111563
  • Viswanath O, Urits I, Burns J, et al. Central Neuropathic Mechanisms in Pain Signaling Pathways: current Evidence and Recommendations. Adv Ther. 2020;37(5):1946–1959. doi:10.1007/s12325-020-01334-w
  • Karran EL, Fryer CE, Middleton JW, Moseley GL. Pain and pain management experiences following spinal cord injury - a mixed methods study of Australian community-dwelling adults. Disabil Rehabil. 2022;1–14. doi:10.1080/09638288.2022.2034994
  • Norrbrink Budh C, Lund I, Ertzgaard P, et al. Pain in a Swedish spinal cord injury population. Clin Rehabil. 2003;17(6):685–690. doi:10.1191/0269215503cr664oa
  • Xu J, X E, Liu H, et al. Tumor necrosis factor-alpha is a potential diagnostic biomarker for chronic neuropathic pain after spinal cord injury. Neurosci Lett. 2015;595:30–34. doi:10.1016/j.neulet.2015.04.004
  • Yang J, Xiong LL, Wang YC, et al. Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associated with altered microRNA expression. Mol Med Rep. 2018;17(1):771–782. doi:10.3892/mmr.2017.7957
  • Hiraga SI, Itokazu T, Nishibe M, Yamashita T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm Regen. 2022;42(1):15. doi:10.1186/s41232-022-00199-6
  • Wang T, Li B, Yuan X, et al. MiR-20a Plays a Key Regulatory Role in the Repair of Spinal Cord Dorsal Column Lesion via PDZ-RhoGEF/RhoA/GAP43 Axis in Rat. Cell Mol Neurobiol. 2019;39(1):87–98. doi:10.1007/s10571-018-0635-0
  • Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther. 2012;23(5):508–520. doi:10.1089/hum.2011.121
  • Hu Y, Liu Q, Zhang M, Yan Y, Yu H, Ge L. MicroRNA-362-3p attenuates motor deficit following spinal cord injury via targeting paired box gene 2. J Integr Neurosci. 2019;18(1):57–64. doi:10.31083/j.jin.2019.01.12
  • Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014;14(4):217–231. doi:10.1038/nri3621
  • Kang SY, Jung HW, Lee MY, Lee HW, Chae SW, Park YK. Effect of the semen extract of Cuscuta chinensis on inflammatory responses in LPS-stimulated BV-2 microglia. Chin J Nat Med. 2014;12(8):573–581. doi:10.1016/S1875-5364(14)60088-1
  • Zychowska M, Rojewska E, Makuch W, Przewlocka B, Mika J. The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. Eur J Pharmacol. 2015;749:115–123. doi:10.1016/j.ejphar.2014.11.022
  • Ji A, Xu J. Neuropathic Pain: biomolecular Intervention and Imaging via Targeting Microglia Activation. Biomolecules. 2021;11(9). doi:10.3390/biom11091343
  • Yu Y, Zhu M, Zhao Y, Xu M, Qiu M. Overexpression of TUSC7 inhibits the inflammation caused by microglia activation via regulating miR-449a/PPAR-gamma. Biochem Biophys Res Commun. 2018;503(2):1020–1026. doi:10.1016/j.bbrc.2018.06.111
  • Gao F, Lei J, Zhang Z, Yang Y, You H. Curcumin alleviates LPS-induced inflammation and oxidative stress in mouse microglial BV2 cells by targeting miR-137-3p/NeuroD1. RSC Adv. 2019;9(66):38397–38406. doi:10.1039/c9ra07266g
  • Yang Z, Xu J, Zhu R, Liu L. Down-Regulation of miRNA-128 Contributes to Neuropathic Pain Following Spinal Cord Injury via Activation of P38. Med Sci Monit. 2017;23:405–411. doi:10.12659/msm.898788
  • Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a Regulates the Inflammation of Spinal Cord Injury by Inhibiting the Expression of NEUROD4. Cell Physiol Biochem. 2018;51(4):1921–1931. doi:10.1159/000495717
  • Dai J, Xu L-J, Han G-D, et al. MiR-137 attenuates spinal cord injury by modulating NEUROD4 through reducing inflammation and oxidative stress. Eur Rev Med Pharmacol Sci. 2018;22:1884–1890. doi:10.26355/eurrev_201804_14709
  • Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi:10.1038/s41392-020-00312-6
  • Grilli M, Memo M. Nuclear factor-kappaB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol. 1999;57:1–7. doi:10.1016/s0006-2952(98)00214-7
  • Kanngiesser M, Haussler A, Myrczek T, et al. Inhibitor kappa B kinase beta dependent cytokine upregulation in nociceptive neurons contributes to nociceptive hypersensitivity after sciatic nerve injury. J Pain. 2012;13(5):485–497. doi:10.1016/j.jpain.2012.02.010
  • Zhou HJ, Wang LQ, Xu QS, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKbeta-NF-kappaB signaling pathway activating microglial cells. Exp Cell Res. 2016;349(1):60–67. doi:10.1016/j.yexcr.2016.09.020
  • Zhenzhen Z, Fenghao L, Meina M, Rui L, Wenbo S, Qi W. Targeting HMGB1-TLR4 signaling by miR-216a-5p elevation alleviates the inflammatory behavioral hypersensitivity. Neurosci Lett. 2021;759:136043. doi:10.1016/j.neulet.2021.136043
  • Wang P, Zhang Y, Xia Y, et al. MicroRNA-139-5p Promotes Functional Recovery and Reduces Pain Hypersensitivity in Mice with Spinal Cord Injury by Targeting Mammalian Sterile 20-like Kinase 1. Neurochem Res. 2021;46(2):349–357. doi:10.1007/s11064-020-03170-4
  • Yao L, Guo Y, Wang L, et al. Knockdown of miR-130a-3p alleviates spinal cord injury induced neuropathic pain by activating IGF-1/IGF-1R pathway. J Neuroimmunol. 2021;351:577458. doi:10.1016/j.jneuroim.2020.577458
  • Chen M, Lai X, Wang X, et al. Long Non-coding RNAs and Circular RNAs: insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci. 2021;14:745066. doi:10.3389/fnmol.2021.745066
  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172. doi:10.1038/s41582-020-00435-y
  • Ramirez AE, Gil-Jaramillo N, Tapias MA, et al. MicroRNA: a Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life. 2022;12(9). doi:10.3390/life12091439
  • Martirosyan NL, Carotenuto A, Patel AA, et al. The Role of microRNA Markers in the Diagnosis, Treatment, and Outcome Prediction of Spinal Cord Injury. Front Surg. 2016;3:56. doi:10.3389/fsurg.2016.00056
  • Tu Z, Li Y, Dai Y, et al. MiR-140/BDNF axis regulates normal human astrocyte proliferation and LPS-induced IL-6 and TNF-alpha secretion. Biomed Pharmacother. 2017;91:899–905. doi:10.1016/j.biopha.2017.05.016
  • Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia. 2013;61(7):1018–1028. doi:10.1002/glia.22483
  • Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis. Glia. 2015;63(2):194–205. doi:10.1002/glia.22743
  • Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol. 2013;9(6):328–339. doi:10.1038/nrneurol.2013.67
  • Sakai A, Suzuki H. Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun. 2013;435(2):176–181. doi:10.1016/j.bbrc.2013.04.089
  • Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32(50):17935–17947. doi:10.1523/JNEUROSCI.3860-12.2012
  • Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330–1333. doi:10.1182/blood-2007-03-081133
  • Herrmann JE, Imura T, Song B, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28(28):7231–7243. doi:10.1523/JNEUROSCI.1709-08.2008
  • Sakai A, Suzuki H. Emerging roles of microRNAs in chronic pain. Neurochem Int. 2014;77:58–67. doi:10.1016/j.neuint.2014.05.010
  • David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388–399. doi:10.1038/nrn3053
  • Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: an Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci. 2022;23(21). doi:10.3390/ijms232113016
  • Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine. 2016;12(3):643–653. doi:10.1016/j.nano.2015.10.011
  • Xie W, Li M, Xu N, et al. MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One. 2013;8(3):e58639. doi:10.1371/journal.pone.0058639
  • Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C. microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett. 2012;586(8):1201–1207. doi:10.1016/j.febslet.2012.03.011
  • Cao Y, Wu TD, Wu H, et al. Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model. Brain Res. 2017;1655:55–65. doi:10.1016/j.brainres.2016.11.015
  • Zheng SR, Guo GL, Zhang W, et al. Clinical significance of miR-155 expression in breast cancer and effects of miR-155 ASO on cell viability and apoptosis. Oncol Rep. 2012;27(4):1149–1155. doi:10.3892/or.2012.1634
  • Gaudet AD, Mandrekar-Colucci S, Hall JC, et al. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. J Neurosci. 2016;36(32):8516–8532. doi:10.1523/JNEUROSCI.0735-16.2016
  • Tan Y, Yang J, Xiang K, Tan Q, Guo Q. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res. 2015;40(3):550–560. doi:10.1007/s11064-014-1500-2
  • Riva P, Ratti A, Venturin M. The Long Non-Coding RNAs in Neurodegenerative Diseases: novel Mechanisms of Pathogenesis. Curr Alzheimer Res. 2016;13(11):1219–1231. doi:10.2174/1567205013666160622112234
  • Feng SD, Yang JH, Yao CH, et al. Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem Cell Biol. 2017;95(3):361–367. doi:10.1139/bcb-2016-0110
  • Tao T, Wu S, Sun Z, et al. The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci Rep. 2019;39(11):754.
  • Li D, Yang C, Yin C, et al. LncRNA, Important Player in Bone Development and Disease. Endocr Metab Immune Disord Drug Targets. 2020;20(1):50–66. doi:10.2174/1871530319666190904161707
  • Zhang P, Wu S, He Y, et al. LncRNA-Mediated Adipogenesis in Different Adipocytes. Int J Mol Sci. 2022;23(13):78.
  • Kong S, Tao M, Shen X, Ju S. Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products. Cancer Lett. 2020;483:59–65. doi:10.1016/j.canlet.2020.04.006
  • Cui Y, Yin Y, Xiao Z, et al. LncRNA Neat1 mediates miR-124-induced activation of Wnt/beta-catenin signaling in spinal cord neural progenitor cells. Stem Cell Res Ther. 2019;10(1):400. doi:10.1186/s13287-019-1487-3
  • Zhang F, Wu L, Qian J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun. 2016;75:96–104. doi:10.1016/j.jaut.2016.07.012
  • Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10(1):1495. doi:10.1038/s41467-019-09482-6
  • Xian S, Ding R, Li M, Chen F. LncRNA NEAT1/miR-128-3p/AQP4 axis regulating spinal cord injury-induced neuropathic pain progression. J Neuroimmunol. 2021;351:577457. doi:10.1016/j.jneuroim.2020.577457
  • Zhang P, Sun H, Ji Z. Downregulating lncRNA PVT1 Relieves Astrocyte Overactivation Induced Neuropathic Pain Through Targeting miR-186-5p/CXCL13/CXCR5 Axis. Neurochem Res. 2021;46(6):1457–1469. doi:10.1007/s11064-021-03287-0
  • Hu J-Z, Rong Z-J, Li M, et al. Silencing of lncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain Through Epigenetic Downregulation of CDK6 Expression. Front Cell Neurosci. 2019;13:50. doi:10.3389/fncel.2019.00050
  • Shao Q, Xu J, Deng R, et al. SNHG 6 promotes the progression of Colon and Rectal adenocarcinoma via miR-101-3p and Wnt/β-catenin signaling pathway. BMC Gastroenterol. 2019;19(1):163. doi:10.1186/s12876-019-1080-3
  • Bian Z, Zhou M, Cui K, et al. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. J Exp Clin Cancer Res. 2021;40(1):360. doi:10.1186/s13046-021-02162-8
  • Liu J, Zhang C, Liu Z, Zhang J, Xiang Z, Sun T. Honokiol downregulates Kruppel-like factor 4 expression, attenuates inflammation, and reduces histopathology after spinal cord injury in rats. Spine. 2015;40(6):363–368. doi:10.1097/BRS.0000000000000758
  • Kaushik DK, Gupta M, Das S, Basu A. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation. 2010;7(1):68. doi:10.1186/1742-2094-7-68
  • Zhao L, Han T, Li Y, et al. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4. FASEB J. 2017;31(3):893–903. doi:10.1096/fj.201600994R
  • Jiang ZS, Zhang JR. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol. 2018;120(Pt A):66–72. doi:10.1016/j.ijbiomac.2018.08.002
  • Zhang JY, Lv DB, Su YN, et al. LncRNA SNHG1 attenuates neuropathic pain following spinal cord injury by regulating CDK4 level. Eur Rev Med Pharmacol Sci. 2020;24(23):12034–12040. doi:10.26355/eurrev_202012_23992
  • Zhang J, Zhao H, Zhang A, et al. Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in Spare Nerve Injury-induced neuropathic pain. Cell Death Discov. 2022;8(1):272. doi:10.1038/s41420-022-01060-y
  • Qu X, Li Z, Chen J, Hou L. The emerging roles of circular RNAs in CNS injuries. J Neurosci Res. 2020;98(7):1485–1497. doi:10.1002/jnr.24591
  • Chen JN, Zhang YN, Tian LG, Zhang Y, Li XY, Ning B. Down-regulating Circular RNA Prkcsh suppresses the inflammatory response after spinal cord injury. Neural Regen Res. 2022;17(1):144–151. doi:10.4103/1673-5374.314114
  • Li X, Kang J, Lv H, et al. CircPrkcsh, a circular RNA, contributes to the polarization of microglia towards the M1 phenotype induced by spinal cord injury and acts via the JNK/p38 MAPK pathway. FASEB J. 2021;35(12):e22014. doi:10.1096/fj.202100993R
  • Wang WZ, Li J, Liu L, et al. Role of circular RNA expression in the pathological progression after spinal cord injury. Neural Regen Res. 2021;16(10):2048–2055. doi:10.4103/1673-5374.308100
  • Li X, Lou X, Xu S, Du J, Wu J. Hypoxia inducible factor-1 (HIF-1alpha) reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723. Biol Res. 2020;53(1):35. doi:10.1186/s40659-020-00302-6
  • Zhao Y, Chen Y, Wang Z, et al. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol. 2022;59(11):6771–6789. doi:10.1007/s12035-022-03006-y
  • Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation. 2017;14(1):207. doi:10.1186/s12974-017-0980-9
  • Tong D, Zhao Y, Tang Y, Ma J, Wang Z, Li C. Circ-Usp10 promotes microglial activation and induces neuronal death by targeting miRNA-152-5p/CD84. Bioengineered. 2021;12(2):10812–10822. doi:10.1080/21655979.2021.2004362
  • Tian F, Yang J, Xia R. Exosomes Secreted from circZFHX3-modified Mesenchymal Stem Cells Repaired Spinal Cord Injury Through mir-16-5p/IGF-1 in Mice. Neurochem Res. 2022;47(7):2076–2089. doi:10.1007/s11064-022-03607-y
  • He R, Tang GL, Niu L, et al. Quietness Circ 0000962 promoted nerve cell inflammation through PIK3CA/Akt/NF-kappaB signaling by miR-302b-3p in spinal cord injury. Ann Palliat Med. 2020;9(2):190–198. doi:10.21037/apm.2020.02.13
  • Ban D, Xiang Z, Yu P, Liu Y. Circular RNA Hecw1 Regulates the Inflammatory Imbalance in Spinal Cord Injury via miR-3551-3p/LRRTM1 Axis. Appl Biochem Biotechnol. 2022;194(11):5151–5166. doi:10.1007/s12010-022-03999-1
  • Xie X, Xiao Y, Xu K. Mechanism underlying circularRNA_014301-mediated regulation of neuronal cell inflammation and apoptosis. Exp Ther Med. 2021;22(6):1432. doi:10.3892/etm.2021.10867
  • Guo K, Chang Y, Jin Y, Yuan H, Che P. circ-Ncam2 (mmu_circ_0006413) Participates in LPS-Induced Microglia Activation and Neuronal Apoptosis via the TLR4/NF-kappaB Pathway. J Mol Neurosci. 2022;72(8):1738–1748. doi:10.1007/s12031-022-02018-6
  • Wang L, Luo T, Bao Z, Li Y, Bu W. Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats. Biochem Biophys Res Commun. 2018;505(3):644–650. doi:10.1016/j.bbrc.2018.09.158
  • Chen J, Fu B, Bao J, Su R, Zhao H, Liu Z. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J Comp Neurol. 2021;529(7):1456–1464. doi:10.1002/cne.25030
  • Yu Z, Liu J, Sun L, Wang Y, Meng H. Combination of Botulinum Toxin and minocycline Ameliorates Neuropathic Pain Through Antioxidant Stress and Anti-Inflammation via Promoting SIRT1 Pathway. Front Pharmacol. 2020;11:602417. doi:10.3389/fphar.2020.602417
  • Wedel S, Mathoor P, Rauh O, et al. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation. 2022;19(1):254. doi:10.1186/s12974-022-02615-7
  • Sanivarapu R, Vallabhaneni V, Verma V. The potential of curcumin in treatment of spinal cord injury. Neurol Res Int. 2016;2016:9468193. doi:10.1155/2016/9468193
  • Ogawa N, Kawai H, Terashima T, et al. Gene therapy for neuropathic pain by silencing of TNF-alpha expression with lentiviral vectors targeting the dorsal root ganglion in mice. PLoS One. 2014;9(3):e92073. doi:10.1371/journal.pone.0092073