280
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress of Cordyceps sinensis and Its Fermented Mycelium Products on Ameliorating Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition

ORCID Icon, , , ORCID Icon &
Pages 2817-2830 | Received 20 Mar 2023, Accepted 21 Jun 2023, Published online: 07 Jul 2023

References

  • Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80(1):309–326.
  • Yuan Q, Liu Y. Recent advances on understanding of the cellular and molecular mechanism of renal fibrosis. J Anhui Univ. 2018;42(5):115–124.
  • Klinkhammer BM, Goldschmeding R, Floege J, Boor P. Treatment of renal fibrosis-turning challenges into opportunities. Adv Chronic Kidney Dis. 2017;24(2):117–129.
  • Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: exploiting the biology of pathogenesis. Biomed Pharmacother. 2021;143:112115.
  • Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6):2299–2306.
  • Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015;87(2):297–307.
  • Sun YB, Qu X, Caruana G, Li J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–107.
  • Djudjaj S, Boor P. Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. 2019;65:16–36.
  • Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9:696542.
  • Wang S, Meng XM, Ng YY, et al. TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 2016;7(8):8809–8822.
  • Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–997.
  • Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21(9):998–1009.
  • Sheng L, Zhuang S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front Physiol. 2020;11:569322.
  • Meng XM, Tang PM, Li J, Lan HY. TGF-beta/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82.
  • Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl. 2014;4(1):84–90.
  • Campbell MT, Hile KL, Zhang H, et al. Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res. 2011;168(1):e61–e69.
  • Chen KH, Hsu HH, Yang HY, et al. Inhibition of spleen tyrosine kinase (syk) suppresses renal fibrosis through anti-inflammatory effects and down regulation of the MAPK-p38 pathway. Int J Biochem Cell Biol. 2016;74:135–144.
  • Zhang F, Liu H, Liu D, et al. Effects of RAAS inhibitors in patients with kidney disease. Curr Hypertens Rep. 2017;19(9):72.
  • Wang DT, Huang RH, Cheng X, Zhang ZH, Yang YJ, Lin X. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats. Int Immunopharmacol. 2015;26(1):4–12.
  • Zhang HF, Wang YL, Gao C, et al. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin. 2018;39(12):1855–1864.
  • Zhou S, Ai Z, Li W, et al. Deciphering the pharmacological mechanisms of taohe-chengqi decoction extract against renal fibrosis through integrating network pharmacology and experimental validation in vitro and in vivo. Front Pharmacol. 2020;11:425.
  • Tan W, Wang Y, Dai H, et al. Potential therapeutic strategies for renal fibrosis: cordyceps and related products. Front Pharmacol. 2022;13:932172.
  • Zhang HW, Lin ZX, Tung YS, et al. Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. Cochrane Database Syst Rev. 2014;2(12):D8353.
  • Li Y, Xu G. Clinical Efficacy and Safety of Jinshuibao Combined With ACEI/ARB in the Treatment of Diabetic Kidney Disease: a Meta-Analysis of Randomized Controlled Trials. J Ren Nutr. 2020;30(2):92–100.
  • Lu Q, Li C, Chen W, Shi Z, Zhan R, He R. Clinical efficacy of jinshuibao capsules combined with angiotensin receptor blockers in patients with early diabetic nephropathy: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2018;2018:6806943.
  • Zhang M, Gao X, Zhang L. Efficacy of Jinshuibao capsule combined with prednisone in early aristolochic acid nephropathy. Capital Med. 2009;16(16):46–47.
  • Huang J, Li J, Liu T. Effect of combined therapy with hypha Cordyceps and ginkgo leaf tablet on micro-inflammation in patients undergoing maintenance hemodialysis. Chin J Integrated Traditional Western Med. 2008;28(6):502–504.
  • Yu W, Duan S, Yu Z. The effect of Bailing capsules combined with losartan to treat diabetic glomerulosclerosis and the combination’s effect on blood and urine biochemistry. Am J Transl Res. 2021;13(6):6873–6880.
  • Wang Y, Zhang Y, Shi L. Influence of bailing capsules and alprostadil on inflammatory factors, liver and renal function in patients with diabetic nephropathy. Western J Traditional Chine Med. 2022;35(06):115–117.
  • Liu Z, Gao B, Li X. Efficacy of the Bailing capsules plus enalapril maleate on chronic glomerulonephritis. Clin J Chine Med. 2022;14(14):115–118.
  • Zhang L. Analysis of the effect of Baling capsule combined with cyclophosphamide in treating chronic glomerulonephritis. Practical Integrated Chine Western Med. 2021;21(06):77–78.
  • Hu X, Cui B, Gao Q, Wang Z, Liu Y. Meta-analysis of Bailing Capsules in improvement of microinflammation and nutritional status among maintenance hemodialysis patients. China J Chine Materia Med. 2022;47(9):2547–2555.
  • Zhi Y, Wei Z, Cao Y. Effect of Bailing Capsules combined with a comprehensive intervention on the renal fibrosis and renal function in patients with chronic renal failure. J Changchun Univ Chine Med. 2022;38(02):213–216.
  • Wang W, Qi J. Clinical study of Zhiling Capsule combined with telmisartan in treatment of early diabetic nephropathy. Drugs Clin. 2018;33(06):1494–1497.
  • Wu H, Tu B. Clinical study on Zhiling Capsules combined with benazepril in treatment of chronic glomerulonephritis. Drugs Clin. 2019;34(06):1789–1792.
  • Jin Y, Zou D, Liu S. Clinical study of zhiling combined with compound α -ketoacid for chronic renal failure. Drugs Clin. 2022;37(04):813–817.
  • Xu X, Jin L. Curative effect of Zhiling capsule combined Valsartan on chronic nephropathy and its influence on renal function. Chine J General Practice. 2016;14(12):2051–2054.
  • Shi Y, Wei Z, Qiao S. The effect of Ning Xinbao for early kidney injury in diabetes mellitus. Shandong Med. 2004;44(35):10–11.
  • Zhang G, Wang W. Clinical observation of treatment of diabetic nephropathy with Xinganbao capsule. Med J Chine Peoples Health. 2015;27(10):80–101.
  • Chang X, Wang J, Wang N. The curative effect of xinganbao combined with losartan in 23 cases of IgA nephropathy. Chine J Integrated Traditional Chine Western Med Nephropathy. 2012;13(04):349–350.
  • Ashraf SA, Elkhalifa A, Siddiqui AJ, et al. Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules. 2020;25(12):2735.
  • Liu W, Gao Y, Zhou Y, Yu F, Li X, Zhang N. Mechanism of cordyceps sinensis and its extracts in the treatment of diabetic kidney disease: a review. Front Pharmacol. 2022;13:881835.
  • Zhang H, Li Y, Mi J, et al. GC-MS profiling of volatile components in different fermentation products of cordyceps sinensis mycelia. Molecules. 2017;22(10):54.
  • Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z. The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 2018;129:293–316.
  • Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145–1152.
  • Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, Pedraza-Chaverri J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules. 2019;9(4):141.
  • Du F, Li S, Wang T, et al. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney. Am J Transl Res. 2015;7(5):932–940.
  • Gu L, Bie R, Tu Y. Mechanisms of cordycepin on improving renal interstitial fibrosis via regulating eIF2α/TGF-β/Smad signaling pathway. China J Chine Materia Med. 2014;39(21):4096–4101.
  • Zheng R, Zhu R, Li X, et al. N6-(2-Hydroxyethyl) Adenosine From Cordyceps cicadae Ameliorates Renal Interstitial Fibrosis and Prevents Inflammation via TGF-β1/Smad and NF-κB Signaling Pathway. Front Physiol. 2018;9:1229.
  • Hu X, Xu Y, Zhang Z, et al. TSC1 affects the process of renal ischemia-reperfusion injury by controlling macrophage polarization. Front Immunol. 2021;12:637335.
  • Ross EA, Devitt A, Johnson JR. Macrophages: the Good, the Bad, and the Gluttony. Front Immunol. 2021;12:708186.
  • Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–461.
  • Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FR. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57(6):1439–1445.
  • Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol. 2007;27(2):195–207.
  • Yu SH, Dubey NK, Li WS, et al. Cordyceps militaris Treatment Preserves Renal Function in Type 2 Diabetic Nephropathy Mice. PLoS One. 2016;11(11):e166342.
  • Dong Z, Sun Y, Wei G, Li S, Zhao Z. A nucleoside/nucleobase-rich extract from cordyceps sinensis inhibits the epithelial-mesenchymal transition and protects against renal fibrosis in diabetic nephropathy. Molecules. 2019;24(22):4119.
  • Yang J, Dong H, Wang Y, et al. Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis. Int J Biol Macromol. 2020;163:442–456.
  • Wang C, Hou XX, Rui HL, et al. Artificially cultivated Ophiocordyceps sinensis alleviates diabetic nephropathy and its podocyte injury via inhibiting P2X7R expression and NLRP3 inflammasome activation. J Diabetes Res. 2018;1390418.
  • Yan LJ. The nicotinamide/streptozotocin rodent model of type 2 diabetes: renal pathophysiology and redox imbalance features. Biomolecules. 2022;12(9):141.
  • Cao T, Xu R, Xu Y, Liu Y, Qi D, Wan Q. The protective effect of Cordycepin on diabetic nephropathy through autophagy induction in vivo and in vitro. Int Urol Nephrol. 2019;51(10):1883–1892.
  • Pan MM, Zhang MH, Ni HF, et al. Inhibition of TGF-β1/Smad signal pathway is involved in the effect of Cordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats. Food Chem Toxicol. 2013;58:487–494.
  • Fei Z, Tang D. Effect of Bailing Capsule on renal connective tissue growth factor expression in a remnant kidney model. Chine J Biomed. 2008;3(2):105–109.
  • Zhu R, Chen YP, Deng YY, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J Zhejiang Univ Sci B. 2011;12(12):1024–1033.
  • Guo S, Zhong F, Zhou Q, et al. Renal protective effect of Cordyceps sinensis on 5 /6 nephrectomy-induced renal fibrosis in rats. J Shanghai Jiaotong Univ. 2012;32(01):1–8.
  • Zhang MH, Pan MM, Ni HF, et al. Effect of Cordyceps sinensis powder on renal oxidative stress and mitochondria functions in 5/6 nephrectomized rats. Chin J Integrated Traditional Western Med. 2015;35(4):443–449.
  • Xu XY, Chai JJ, Chen YP, et al. Hirsutella sinensis Attenuates Aristolochic Acid-Induced Renal Tubular Epithelial-Mesenchymal Transition by Inhibiting TGF-β1 and Snail Expression. PLoS One. 2016;11(2):e149242.
  • Chai JJ, Chen YP, Rui HL. Effects of Hirsutella sinensis on TGF-beta1 and Snail expressions and transdifferentiation of tubular epithelial-myofibroblast in renal tissue of rats with chronic aristolochic acid nephropathy. Chin J Integrated Traditional Western Med. 2009;29(4):325–329.
  • Zhu YF, Chen YP, Rui HL, Dong HR, Hu Z. Protective effects of Hirsutella sinensis on renal interstitial fibrosis: experiment with rat model of chronic aristolochic acid nephropathy. Chin Med J. 2007;87(38):2667–2671.
  • Deng JS, Jiang WP, Chen CC, et al. Cordyceps cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF-κB/MAPK and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. Oxid Med Cell Longev. 2020;2020:7912763.
  • Li N, Chen X, Yang D, Zhao D, Bi L. Prevention and treatment of renal interstitial fibrosis by Bailing capsule in rats. Chine Med Herald. 2006;3(30):16–18.
  • Huang YS, Wang X, Feng Z, et al. Cordyceps cicadae Prevents Renal Tubular Epithelial Cell Apoptosis by Regulating the SIRT1/p53 Pathway in Hypertensive Renal Injury. Evid Based Complement Alternat Med. 2020;2020:7202519.
  • Cai Y, Feng Z, Jia Q, et al. Cordyceps cicadae Ameliorates Renal Hypertensive Injury and Fibrosis Through the Regulation of SIRT1-Mediated Autophagy. Front Pharmacol. 2021;12:801094.
  • Li L, He D, Yang J, Wang X. Cordycepin inhibits renal interstitial myofibroblast activation probably by inducing hepatocyte growth factor expression. J Pharmacol Sci. 2011;117(4):286–294.
  • Zhu R, Zheng R, Deng Y, Chen Y, Zhang S. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts. Phytomedicine. 2014;21(3):372–378.
  • Gifford CC, Tang J, Costello A, et al. Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond). 2021;135(2):275–303.
  • Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 2018;820:65–76.
  • Ma TT, Meng XM. TGF-β/Smad and Renal Fibrosis. Adv Exp Med Biol. 2019;1165:347–364.
  • Meng XM, Chung AC, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond). 2013;124(4):243–254.
  • Duan Y, Yang S, Chen B. Regulating effects of Cordyceps sinensis capsule and telmisartan tablets on renal tubular epithelial-mesenchymal transition in in diabetic nephropathy rats. Chin J Clin Pharmacol. 2016;32(23):2170–2173.
  • Nguyen TQ, Goldschmeding R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res. 2008;25(10):2416–2426.
  • Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res. 2015;165(4):512–530.
  • Zhu B, Chen C. Effect of artificial cordyceps sinensis on the transformed growth factor-β1 and connective tissue growth factor expression in interstitial fibrotic rats. Clin Rational Drug Use. 2011;4(33):11–12.
  • Zhang L, Yan Y. Protective effect of Cordyceps sinensis on diabetic nephropathy in a rat model. Jiangxi Med J. 2014;49(11):1188–1192.
  • Chen J, Yao W, Zhu S, Zhu H, Ye L. Cordyceps sinensis attenuates renal epithelial-mesenchymal-transition in diabetic mice vial TGF-β/Snail signal pathway. Clin J Med Officers. 2017;45(2):140–144.
  • Li SS, Sun Q, Hua MR, et al. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol. 2021;12:719880.
  • Du Y, Liu Y, Lu S, Liu Y, Qi W, Fu Y. Effects of Cordyceps sinensis on expressions of DKK1 and β-catenin in diabetic rats. J Shandong Univ. 2012;50(06):26–30.
  • Li Z, Liu X, Wang B, et al. Pirfenidone suppresses MAPK signalling pathway to reverse epithelial-mesenchymal transition and renal fibrosis. Nephrology. 2017;22(8):589–597.
  • Lan H. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci. 2011;7(7):1056–1067.
  • Xue YS, Enosi Tuipulotu D, Tan WH, et al. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035–1052.
  • Wang MZ, Wang J, Cao DW, et al. Fucoidan alleviates renal fibrosis in diabetic kidney disease via inhibition of NLRP3 inflammasome-mediated podocyte pyroptosis. Front Pharmacol. 2022;790937.
  • Ram C, Gairola S, Syed AM, et al. Biochanin A alleviates unilateral ureteral obstruction-induced renal interstitial fibrosis and inflammation by inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis in mice. Life Sci. 2022;298:120527.