163
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integrated Analysis Identifies Upregulated SAMD9L as a Potential Biomarker Correlating with the Severity of Primary Sjögren’s Syndrome

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 3725-3738 | Received 23 Apr 2023, Accepted 25 Jul 2023, Published online: 28 Aug 2023

References

  • Tsuboi H, Asashima H, Takai C, et al. Primary and secondary surveys on epidemiology of Sjögren’s syndrome in Japan. Mod Rheumatol. 2014;24(3):464–470. doi:10.3109/14397595.2013.843765
  • Glover K, Mishra D, Singh TRR. Epidemiology of ocular manifestations in autoimmune disease. Front Immunol. 2021;12:744396. doi:10.3389/fimmu.2021.744396
  • Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European league against rheumatism classification criteria for primary Sjögren’s Syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol. 2017;69(1):35–45. doi:10.1002/art.39859
  • Shunle C, Hejian Z. Rheumatology. 2th ed. Beijing, China: Elsevier Health Sciences; 2014.
  • Whitcher JP, Shiboski CH, Shiboski SC, et al. A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjögren’s Syndrome International Registry. Am J Ophthalmol. 2010;149(3):405–415. doi:10.1016/j.ajo.2009.09.013
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun. 2010;34(4):400–407. doi:10.1016/j.jaut.2009.10.004
  • Chatzis L, Goules AV, Stergiou IE, Voulgarelis M, Tzioufas AG, Kapsogeorgou EK. Serum, but not saliva, CXCL13 levels associate with infiltrating CXCL13+ cells in the minor salivary gland lesions and other histologic parameters in patients with Sjögren’s Syndrome. Front Immunol. 2021;12:705079. doi:10.3389/fimmu.2021.705079
  • Luo J, Liao X, Zhang L, et al. Transcriptome sequencing reveals potential roles of in primary Sjögren’s syndrome. Front Cell Dev Biol. 2020;8:592490. doi:10.3389/fcell.2020.592490
  • Tasaki S, Suzuki K, Nishikawa A, et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76(8):1458–1466. doi:10.1136/annrheumdis-2016-210788
  • Luo J, Liao X, Zhang L, et al. Transcriptome sequencing reveals potential roles of ICOS in primary Sjögren’s syndrome. Front Cell Dev Biol. 2020;8:592490.
  • Verstappen GM, Gao L, Pringle S, et al. The transcriptome of paired major and minor salivary gland tissue in patients with primary Sjögren’s syndrome. Front Immunol. 2021;12:681941. doi:10.3389/fimmu.2021.681941
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Aota K, Ono S, Yamanoi T, Kani K, Momota Y, Azuma M. MMP-9 inhibition suppresses interferon-γ-induced CXCL10 production in human salivary gland ductal cells. Inflammation. 2019;42(6):2148–2158. doi:10.1007/s10753-019-01079-x
  • Tian Q, Zhao H, Ling H, et al. Poly(ADP-Ribose) polymerase enhances infiltration of mononuclear cells in primary Sjögren’s syndrome through interferon-induced protein with tetratricopeptide repeats 1-mediated up-regulation of CXCL10. Arthritis Rheumatol. 2020;72(6):1003–1012. doi:10.1002/art.41195
  • Khuder SA, Al-Hashimi I, Mutgi AB, Altorok N. Identification of potential genomic biomarkers for Sjögren’s syndrome using data pooling of gene expression microarrays. Rheumatol Int. 2015;35(5):829–836. doi:10.1007/s00296-014-3152-6
  • Li CF, MacDonald JR, Wei RY, et al. Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse. BMC Genom. 2007;8:92. doi:10.1186/1471-2164-8-92
  • Tesi B, Davidsson J, Voss M, et al. Gain-of-function mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017;129(16):2266–2279. doi:10.1182/blood-2016-10-743302
  • Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer. 2021;21(2):122–137. doi:10.1038/s41568-020-00315-z
  • Asou H, Matsui H, Ozaki Y, Nagamachi A, Nakamura M, Aki D. Inaba T: identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383(2):245–251. doi:10.1016/j.bbrc.2009.04.004
  • Chen D-H, Below JE, Shimamura A, et al. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2016;98(6):1146–1158. doi:10.1016/j.ajhg.2016.04.009
  • Nagamachi A, Matsui H, Asou H, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 2013;24(3):305–317. doi:10.1016/j.ccr.2013.08.011
  • de Jesus AA, Hou Y, Brooks S, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020;130(4):1669–1682. doi:10.1172/JCI129301
  • Wang Q, Zhai -Y-Y, Dai J-H, Li K-Y, Deng Q, Han Z-G. SAMD9L inactivation promotes cell proliferation via facilitating G1-S transition in hepatitis B virus-associated hepatocellular carcinoma. Int J Biol Sci. 2014;10(8):807–816. doi:10.7150/ijbs.9143
  • Meng X, Schoggins J, Rose L, et al. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1. J Virol. 2012;86(8):4538–4547. doi:10.1128/JVI.06140-11
  • Li J, Ding SC, Cho H, Chung BC, Gale M, Chanda SK, Diamond MS. A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio. 2013;4(3):e00385–e00313. doi:10.1128/mBio.00385-13
  • Meng X, Zhang F, Yan B, et al. A paralogous pair of mammalian host restriction factors form a critical host barrier against poxvirus infection. PLoS Pathog. 2018;14(2):e1006884. doi:10.1371/journal.ppat.1006884
  • Liao W, Overman M, Boutin A, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 2019;35(4):559–572.e557. doi:10.1016/j.ccell.2019.02.008
  • Dunn G, Bruce A, Sheehan K, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–729. doi:10.1038/ni1213
  • Kivity S, Arango MT, Ehrenfeld M, et al. Infection and autoimmunity in Sjogren’s syndrome: a clinical study and comprehensive review. J Autoimmun. 2014;51:17–22. doi:10.1016/j.jaut.2014.02.008
  • Liu Z, Chu A. Sjögren’s syndrome and viral infections. Rheumatol Ther. 2021;8(3):1051–1059. doi:10.1007/s40744-021-00334-8
  • Fisher B, Jonsson R, Daniels T, et al. Standardisation of labial salivary gland histopathology in clinical trials in primary Sjögren’s syndrome. Ann Rheum Dis. 2017;7(76):1161–1168. doi:10.1136/annrheumdis-2016-210448
  • Jonsson R, Brokstad KA, Jonsson MV, Delaleu N, Skarstein K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur J Oral Sci. 2018;1(126 Suppl 1):37–48. doi:10.1111/eos.12536