245
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Interaction Between Blood Vasculatures and Lymphatic Vasculatures During Inflammation

, , , , , & show all
Pages 3271-3281 | Received 29 Mar 2023, Accepted 21 Jul 2023, Published online: 04 Aug 2023

References

  • Singh N, Baby D, Rajguru J, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–126. doi:10.4103/aam.aam_56_18
  • Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. doi:10.1038/s41591-019-0675-0
  • Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation. Science. 2021;374(6571):1076–1080. doi:10.1126/science.abi5934
  • Shi X, Seidle KA, Simms KJ, et al. Endothelial progenitor cells in the host defense response. Pharmacol Ther. 2023;241:108315. doi:10.1016/j.pharmthera.2022.108315
  • Lee HJ, Hong YJ, Kim M. Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci. 2021;22:12035.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–1264. doi:10.1016/j.cell.2019.01.021
  • Ling M, Lai X, Quan L, et al. Knockdown of VEGFB/VEGFR1 signaling promotes white adipose tissue browning and skeletal muscle development. Int J Mol Sci. 2022;23(14):7524. doi:10.3390/ijms23147524
  • Wang R, Yang M, Jiang L, Huang M. Role of angiopoietin-tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res. 2022;182:106331. doi:10.1016/j.phrs.2022.106331
  • Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: from progenitor cells to functional vessels. Dev Dyn. 2015;244(3):323–331. doi:10.1002/dvdy.24227
  • Wang X, Zhao J, Qin L. VEGF-C mediated enhancement of lymphatic drainage reduces intestinal inflammation by regulating IL-9/IL-17 balance and improving gut microbiota in experimental chronic colitis. Am J Transl Res. 2017;9(11):4772–4784.
  • Miyazaki T, Miyazaki A. Hypercholesterolemia and lymphatic defects: the chicken or the egg?. Front Cardiovasc Med. 2021;8:701229. doi:10.3389/fcvm.2021.701229
  • Sammarco G, Varricchi G, Ferraro V, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci. 2019;20(9):2106. doi:10.3390/ijms20092106
  • Wang XL, Zhao J, Qin L, Qiao M. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis. Braz J Med Biol Res. 2016;49(5):e4738. doi:10.1590/1414-431x20154738
  • D’Alessio S, Correale C, Tacconi C, et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest. 2014;124(9):3863–3878. doi:10.1172/JCI72189
  • Li CZ, Jiang X-J, Lin B, et al. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway. Onco Targets Ther. 2018;11:2875–2890. doi:10.2147/OTT.S159026
  • Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460–476. doi:10.1016/j.cell.2010.01.045
  • Immormino RM, Jania CM, Tilley SL, Moran TP. Neuropilin-2 regulates airway inflammation in a neutrophilic asthma model. Immun Inflamm Dis. 2022;10(3):e575. doi:10.1002/iid3.575
  • Islam R, Mishra J, Bodas S, et al. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev. 2022;41(3):771–787. doi:10.1007/s10555-022-10048-0
  • Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med. 2009;13(8a):1405–1416. doi:10.1111/j.1582-4934.2009.00834.x
  • Huggenberger R, Detmar M. The cutaneous vascular system in chronic skin inflammation. J Invest Dermatol Symp Proc. 2011;15(1):24–32. doi:10.1038/jidsymp.2011.5
  • Bowlin A, Roys H, Wanjala H, et al. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in leishmania major infection. Infect Immun. 2021;89(8):e0012421. doi:10.1128/IAI.00124-21
  • Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39(7). doi:10.1042/BSR20190433
  • He Y, Kim J, Tacconi C, et al. Mediators of capillary-to-venule conversion in the chronic inflammatory skin disease psoriasis. J Invest Dermatol. 2022;142(12):3313–3326.e13. doi:10.1016/j.jid.2022.05.1089
  • Rodrigues-Braz D, Zhao M, Yesilirmak N, et al. Cutaneous and ocular rosacea: common and specific physiopathogenic mechanisms and study models. Mol Vis. 2021;27:323–353.
  • Stinco G, Buligan C, Maione V, Valent F, Patrone P. Videocapillaroscopic findings in the microcirculation of the psoriatic plaque during etanercept therapy. Clin Exp Dermatol. 2013;38(6):633–637. doi:10.1111/ced.12036
  • Micali G, Lacarrubba F, Musumeci ML, Massimino D, Nasca MR. Cutaneous vascular patterns in psoriasis. Int J Dermatol. 2010;49(3):249–256. doi:10.1111/j.1365-4632.2009.04287.x
  • Luengas‐Martinez A, Paus R, Young HS. Antivascular endothelial growth factor-a therapy: a novel personalized treatment approach for psoriasis. Br J Dermatol. 2022;186(5):782–791. doi:10.1111/bjd.20940
  • Schonthaler HB, Huggenberger R, Wculek SK, Detmar M, Wagner EF. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc Natl Acad Sci U S A. 2009;106(50):21264–21269. doi:10.1073/pnas.0907550106
  • Meier TO, Kovacicova L, Huggenberger R, et al. Increased permeability of cutaneous lymphatic capillaries and enhanced blood flow in psoriatic plaques. Dermatology. 2013;227(2):118–125. doi:10.1159/000351878
  • Granata F, Frattini A, Loffredo S, et al. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J Immunol. 2010;184(9):5232–5241. doi:10.4049/jimmunol.0902501
  • Schwager S, Detmar M. Inflammation and lymphatic function. Front Immunol. 2019;10:308. doi:10.3389/fimmu.2019.00308
  • Moustou AE, Alexandrou P, Stratigos AJ, et al. Expression of lymphatic markers and lymphatic growth factors in psoriasis before and after anti-TNF treatment. An Bras Dermatol. 2014;89(6):891–897. doi:10.1590/abd1806-4841.20143210
  • Syed SN, Raue R, Weigert A, von Knethen A, Brune B. Macrophage S1PR1 signaling alters angiogenesis and lymphangiogenesis during skin inflammation. Cells. 2019;8(8):785. doi:10.3390/cells8080785
  • Zheng Z, Zeng Y-Z, Ren K, et al. S1P promotes inflammation-induced tube formation by HLECs via the S1PR1/NF-κB pathway. Int Immunopharmacol. 2019;66:224–235. doi:10.1016/j.intimp.2018.11.032
  • Wang J, Liu L, Sun X-Y, et al. Evidence and potential mechanism of action of lithospermum erythrorhizon and its active components for psoriasis. Front Pharmacol. 2022;13:781850. doi:10.3389/fphar.2022.781850
  • Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443(7114):993–997. doi:10.1038/nature05249
  • Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American ophthalmological society thesis). Trans Am Ophthalmol Soc. 2006;104:264–302.
  • Albuquerque RJC, Hayashi T, Cho WG, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15(9):1023–1030. doi:10.1038/nm.2018
  • Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int J Mol Sci. 2020;21(4):1388. doi:10.3390/ijms21041388
  • Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27(4):331–371. doi:10.1016/j.preteyeres.2008.05.001
  • Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res. 2021;202:108363. doi:10.1016/j.exer.2020.108363
  • Lee HK, Lee SM, Lee DI. Corneal lymphangiogenesis: current pathophysiological understandings and its functional role in ocular surface disease. Int J Mol Sci. 2021;22:11628.
  • Chung E-S, Saban DR, Chauhan SK, Dana R. Regulation of blood vessel versus lymphatic vessel growth in the cornea. Invest Ophthalmol Visual Sci. 2009;50(4):1613–1618. doi:10.1167/iovs.08-2212
  • Martinez NE, Sato F, Kawai E, et al. Regulatory T cells and Th17 cells in viral infections: implications for multiple sclerosis and myocarditis. Future Virol. 2012;7:593–608. doi:10.2217/fvl.12.44
  • Povoa TF, Alves AMB, Oliveira CAB, et al. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One. 2014;9(4):e83386. doi:10.1371/journal.pone.0083386
  • Saggioro FP, Rossi M, Duarte M, et al. Hantavirus infection induces a typical myocarditis that may be responsible for myocardial depression and shock in hantavirus pulmonary syndrome. J Infect Dis. 2007;195(10):1541–1549. doi:10.1086/513874
  • Ino T, Kishiro M, Okubo M, et al. Late, persistent expressions of ICAM-1 and VCAM-1 on myocardial tissue in children with lymphocytic myocarditis. Cardiovasc Res. 1997;34(2):323–328. doi:10.1016/S0008-6363(97)00002-3
  • Benvenuti LA, Higuchi ML, Reis MM. Upregulation of adhesion molecules and class I HLA in the myocardium of chronic chagasic cardiomyopathy and heart allograft rejection, but not in dilated cardiomyopathy. Cardiovasc Pathol. 2000;9(2):111–117. doi:10.1016/S1054-8807(00)00027-2
  • Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation. 1999;99(8):1091–1100. doi:10.1161/01.CIR.99.8.1091
  • Woudstra L, Juffermans LJM, van Rossum AC, Niessen HWM, Krijnen PAJ. Infectious myocarditis: the role of the cardiac vasculature. Heart Fail Rev. 2018;23(4):583–595. doi:10.1007/s10741-018-9688-x
  • Zagrosek A, Wassmuth R, Abdel-Aty H, et al. Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis – a CMR study. J Cardiovasc Magn Reson. 2008;10(1):19. doi:10.1186/1532-429X-10-19
  • Shimada T, Noguchi T, Takita K, Kitamura H, Nakamura M. Morphology of lymphatics of the mammalian heart with special reference to the architecture and distribution of the subepicardial lymphatic system. Acta Anat. 1989;136(1):16–20. doi:10.1159/000146791
  • Zhang L, Han B, Liu H, et al. Circular RNA circACSL1 aggravated myocardial inflammation and myocardial injury by sponging miR-8055 and regulating MAPK14 expression. Cell Death Dis. 2021;12(5):487. doi:10.1038/s41419-021-03777-7
  • Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. 2013;64(1):362–369. doi:10.1016/j.cyto.2013.05.015
  • Al-Kofahi M, Omura S, Tsunoda I, et al. IL-1β reduces cardiac lymphatic muscle contraction via COX-2 and PGE2 induction: potential role in myocarditis. Biomed Pharmacother. 2018;107:1591–1600. doi:10.1016/j.biopha.2018.08.004
  • Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia. 2010;58(3):253–263. doi:10.1002/glia.20928
  • Lu S-Z, Wu Y, Guo Y-S, et al. Inhibition of astrocytic DRD2 suppresses CNS inflammation in an animal model of multiple sclerosis. J Exp Med. 2022;219(9). doi:10.1084/jem.20210998
  • Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6_suppl_1):S93–S95. doi:10.1161/STROKEAHA.112.678698
  • Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999. doi:10.1084/jem.20142290
  • Wu F, Liu L, Zhou H. Endothelial cell activation in central nervous system inflammation. J Leukoc Biol. 2017;101(5):1119–1132. doi:10.1189/jlb.3RU0816-352RR
  • Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res. 2010;88(1):58–66. doi:10.1093/cvr/cvq195
  • Li X, Qi L, Yang D, et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci. 2022;25(5):577–587. doi:10.1038/s41593-022-01063-z
  • Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi:10.1038/nature14432
  • Hogan BM, Bower NI. Lymphatics and the brain: it’s time to go fishing. Circ Res. 2021;128(1):59–61. doi:10.1161/CIRCRESAHA.120.318496
  • DeSesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol. 2001;39(3):209–228. doi:10.1016/S0278-6915(00)00136-8
  • Zhang F, Zarkada G, Han J, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361(6402):599–603. doi:10.1126/science.aap9331
  • D’Alessio S, Tacconi C, Fiocchi C, Danese S. Advances in therapeutic interventions targeting the vascular and lymphatic endothelium in inflammatory bowel disease. Curr Opin Gastroenterol. 2013;29(6):608–613. doi:10.1097/MOG.0b013e328365d37c
  • Verstockt B, Vetrano S, Salas A, et al. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2022;19(6):351–366. doi:10.1038/s41575-021-00574-7
  • Dai B, Hackney JA, Ichikawa R, et al. Dual targeting of lymphocyte homing and retention through α4β7 and αEβ7 inhibition in inflammatory bowel disease. Cell Rep Med. 2021;2(8):100381. doi:10.1016/j.xcrm.2021.100381
  • Martin-Rodriguez O, Gauthier T, Bonnefoy F, et al. Pro-resolving factors released by macrophages after efferocytosis promote mucosal wound healing in inflammatory bowel disease. Front Immunol. 2021;12:754475. doi:10.3389/fimmu.2021.754475
  • Zhang L, Ocansey DK, Liu L, et al. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother. 2021;140:111752. doi:10.1016/j.biopha.2021.111752
  • Hokari R, Tomioka A. The role of lymphatics in intestinal inflammation. Inflamm Regen. 2021;41(1):25. doi:10.1186/s41232-021-00175-6
  • Sato H, Higashiyama M, Hozumi H, et al. Platelet interaction with lymphatics aggravates intestinal inflammation by suppressing lymphangiogenesis. Am J Physiol Gastrointest Liver Physiol. 2016;311(2):G276–G285. doi:10.1152/ajpgi.00455.2015
  • Lee AS, Hur HJ, Sung MJ. The effect of artemisinin on inflammation-associated lymphangiogenesis in experimental acute colitis. Int J Mol Sci. 2020;21:8068.
  • Solorzano E, Alejo AL, Ball HC, et al. Osteopathy in complex lymphatic anomalies. Int J Mol Sci. 2022;23(15):8258. doi:10.3390/ijms23158258
  • Chen J, Sivan U, Tan SL, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7:eabd7819.
  • Biswas L, Chen J, De Angelis J, et al. Lymphatic vessels in bone support regeneration after injury. Cell. 2023;186(2):382–397.e324. doi:10.1016/j.cell.2022.12.031
  • Stucker S, Chen J, Watt FE, Kusumbe AP. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases. Front Cell Dev Biol. 2020;8:602269. doi:10.3389/fcell.2020.602269
  • Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522(7554):62–67. doi:10.1038/nature14483
  • Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–191. doi:10.1038/s41586-018-0368-8
  • Lopez Gelston CA, Balasubbramanian D, Abouelkheir GR, et al. Enhancing renal lymphatic expansion prevents hypertension in mice. Circ Res. 2018;122(8):1094–1101. doi:10.1161/CIRCRESAHA.118.312765
  • Wang H, Chen Y, Li W, et al. Effect of VEGFC on lymph flow and inflammation-induced alveolar bone loss. J Pathol. 2020;251(3):323–335. doi:10.1002/path.5456
  • Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):762–774. doi:10.1001/jama.2016.0288
  • Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):775–787. doi:10.1001/jama.2016.0289
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427(6970):154–159. doi:10.1038/nature02238
  • Wang Q, Zhang H-W, Mei H-X, et al. MCTR1 enhances the resolution of lipopolysaccharide-induced lung injury through STAT6-mediated resident M2 alveolar macrophage polarization in mice. J Cell Mol Med. 2020;24(17):9646–9657. doi:10.1111/jcmm.15481