371
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Distinct Features of Vascular Diseases in COVID-19

ORCID Icon, , , , , , ORCID Icon, , , , , , , , , , , & show all
Pages 2783-2800 | Received 18 Apr 2023, Accepted 28 Jun 2023, Published online: 06 Jul 2023

References

  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi:10.1001/jama.2020.1585
  • Xu YH, Dong JH, An WM, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect. 2020;80:394–400. doi:10.1016/j.jinf.2020.02.017
  • Ulinici M, Covantev S, Wingfield-Digby J, et al. Screening, diagnostic and prognostic tests for COVID-19: a comprehensive review. Life. 2021;11:561. doi:10.3390/life11060561
  • Saber-Ayad M, Saleh MA, Abu-Gharbieh E. The rationale for potential pharmacotherapy of COVID-19. Pharmaceuticals. 2020;13:96. doi:10.3390/ph13050096
  • Bonnesen B, Jensen JUS, Jeschke KN, et al. Management of COVID-19-associated acute respiratory failure with alternatives to invasive mechanical ventilation: high-flow oxygen, continuous positive airway pressure, and noninvasive ventilation. Diagnostics. 2021;11:2259. doi:10.3390/diagnostics11122259
  • Stoichitoiu LE, Pinte L, Ceasovschih A, et al. In-hospital antibiotic use for COVID-19: facts and rationales assessed through a mixed-methods study. J Clin Med. 2022;11(11):3194. doi:10.3390/jcm11113194
  • Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–260. doi:10.1038/s41569-020-0360-5
  • Leung TYM, Chan AYL, Chan EW, et al. Short- and potential long-term adverse health outcomes of Covid-19: a rapid review. Emerg Microbes Infect. 2020;9:2190–2199. doi:10.1080/22221751.2020.1825914
  • Monteil V, Kwon H, Prado P. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913. doi:10.1016/j.cell.2020.04.004
  • Hohberger B, Ganslmayer M, Lucio M, et al. Retinal microcirculation as a correlate of a systemic capillary impairment after severe acute respiratory syndrome coronavirus 2 infection. Front Med. 2021;8:676554. doi:10.3389/fmed.2021.676554
  • Osiaevi I, Schulze A, Evers G, et al. Persistent capillary rarefication in long COVID syndrome. Angiogenesis. 2023;26(1):53–61. doi:10.1007/s10456-022-09850-9
  • Gavriilaki E, Anyfanti P, Gavriilaki M, et al. Endothelial dysfunction in COVID-19: lessons learned from coronaviruses. Curr Hypertens Rep. 2020;22(9):63. doi:10.1007/s11906-020-01078-6
  • Nakano H, Shiina K, Tomiyama H. Cardiovascular outcomes in the acute phase of COVID-19. Int J Mol Sci. 2021;22(8):4071. doi:10.3390/ijms22084071
  • Vlacil AK, Bänfer S, Jacob R, et al. Polystyrene microplastic particles induce endothelial activation. PLoS One. 2021;16(11):e0260181. doi:10.1371/journal.pone.0260181
  • Endemann DH, Schiffrin EL. Endothelial Dysfunction. J Am Soc Nephrol. 2004;15(8):1983–1992. doi:10.1097/01.ASN.0000132474.50966.DA
  • Kotlyarov S, Kotlyarova A. The importance of the plasma membrane in atherogenesis. Membranes. 2022;12:1036. doi:10.3390/membranes12111036
  • Tripska K, Igreja Sá IC, Vasinova M, et al. Monoclonal anti-endoglin antibody TRC105 (carotuximab) prevents hypercholesterolemia and hyperglycemia-induced endothelial dysfunction in human aortic endothelial cells. Front Med. 2022;9:845918. doi:10.3389/fmed.2022.845918
  • Alexander Y, Osto E, Schmidt-Trucksäss A, et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis. Cardiovasc Res. 2020;117(1):29–42.
  • Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts. 2022;13(1):34–54. doi:10.1515/bmc-2022-0001
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi:10.1056/NEJMoa2015432
  • Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020;9(7):1652. doi:10.3390/cells9071652
  • Shankar A, Varadan B, Ethiraj D, et al. Systemic arterio-venous thrombosis in COVID-19: a pictorial review. World J Radiol. 2021;13(1):19–28. doi:10.4329/wjr.v13.i1.19
  • Sanders MJ, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323:1824–1836. doi:10.1001/jama.2020.6019
  • South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318:1084–1090. doi:10.1152/ajpheart.00217.2020
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi:10.1016/j.cell.2020.02.052
  • Khomich OA, Kochetkov SN, Bartosch B, Barr JJ, Bollyky PL. Redox biology of respiratory viral infections. Viruses. 2018;11:10. doi:10.3390/v11010010
  • Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper. Front Immunol. 2020;10(11):1648. doi:10.3389/fimmu.2020.01648
  • Coman AE, Ceasovschih A, Petroaie AD, et al. The significance of low magnesium levels in COVID-19 patients. Medicina. 2023;59(2):279. doi:10.3390/medicina59020279
  • Jin Y, Ji W, Yang H, et al. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293. doi:10.1038/s41392-020-00454-7
  • Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi:10.1111/jth.14850
  • Rovas A, Osiaevi I, Buscher K, et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 2021;24(1):145–157. doi:10.1007/s10456-020-09753-7
  • Queisser KA, Mellema RA, Middleton EA, et al. COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight. 2021;6(17):e147472. doi:10.1172/jci.insight.147472
  • Laurent S, Boutouyrie P. Arterial stiffness and hypertension in the elderly. Front Cardiovasc Med. 2020;7. doi:10.3389/fcvm.2020.544302
  • Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018;123:825–848. doi:10.1161/CIRCRESAHA.118.312563
  • Lacolley P, Regnault V, Laurent S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol. 2020;40:1055–1062. doi:10.1161/ATVBAHA.119.313129
  • Lyle AN, Raaz U. Killing me unsoftly: causes and mechanisms of arterial stiffness. Arterioscler Thromb Vasc Biol. 2017;37:1–11. doi:10.1161/ATVBAHA.116.308563
  • Tsioufis C, Dimitriadis K. Sympathetic system-related artery stiffness. Hypertension. 2019;73(5):975–976. doi:10.1161/HYPERTENSIONAHA.119.12571
  • Zota IM, Stătescu C, Sascău RA, et al. Arterial stiffness assessment using the arteriograph in patients with moderate–severe OSA and metabolic syndrome—a pilot study. J Clin Med. 2021;10:4238.
  • Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–1241.
  • Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–511. doi:10.1161/CIRCULATIONAHA.109.886655
  • Niiranen TJ, Kalesan B, Hamburg NM, et al. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the Framingham Heart Study. J Am Heart Assoc. 2016;5. doi:10.1161/JAHA.116.004271
  • Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–1327. doi:10.1016/j.jacc.2009.10.061
  • Wang XK, Keith JC, Struthers AD, et al. Assessment of arterial stiffness, a translational medicine biomarker system for evaluation of vascular risk. Cardiovasc Ther. 2008;26:214–223. doi:10.1111/j.1755-5922.2008.00051.x
  • Zota IM, Stătescu C, Sascău RA, et al. Acute and long-term consequences of COVID-19 on arterial stiffness—a narrative review. Life. 2022;12:781. doi:10.3390/life12060781
  • Schnaubelt S, Oppenauer J, Tihanyi D, et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med. 2021;290:437–443. doi:10.1111/joim.13275
  • Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol. 2021;320:404–410.
  • Szeghy RE, Province VM, Stute NL, et al. Carotid stiffness, intima-media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol. 2022;107:694–707. doi:10.1113/EP089481
  • Kumar N, Kumar S, Kumar A, et al. The COSEVAST study outcome: evidence of COVID-19 severity proportionate to surge in arterial stiffness. Indian J Crit Care Med. 2021;25:1113–1119. doi:10.5005/jp-journals-10071-24000
  • Nandadeva D, Young BE, Stephens BY, et al. Blunted peripheral but not cerebral vasodilator function in young otherwise healthy adults with persistent symptoms following COVID-19. Am J Physiol. 2021;321:479–484.
  • Szeghy RE, Stute NL, Province VM, et al. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol. 2022;132:1297–1309. doi:10.1152/japplphysiol.00793.2021
  • Spronck B, Heusinkveld MH, Vanmolkot FH, et al. Pressure-dependence of arterial stiffness: potential clinical implications. J Hypertens. 2015;33:330–338. doi:10.1097/HJH.0000000000000407
  • Nandadeva D, Skow RJ, Grotle AK, et al. Impact of COVID-19 on ambulatory blood pressure in young adults: a cross-sectional analysis investigating time since diagnosis. J Appl Physiol. 2022;133:183–190. doi:10.1152/japplphysiol.00216.2022
  • Küçük U, Gazi E, Duygu A, et al. Evaluation of aortic elasticity parameters in survivors of COVID-19 using echocardiography imaging. Med Princ Pract. 2022;31:276–283. doi:10.1159/000522626
  • Zanoli L, Gaudio A, Mikhailidis DP, et al. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ Res. 2022;130:1276–1285. doi:10.1161/CIRCRESAHA.121.320460
  • Lambadiari V, Mitrakou A, Kountouri A, et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur J Heart Fail. 2021;23:1916–1926. doi:10.1002/ejhf.2326
  • Ikonomidis I, Lambadiari V, Mitrakou A, et al. Myocardial work and vascular dysfunction are partially improved at 12 months after COVID-19 infection. Eur J Heart Fail. 2022;24:727–729. doi:10.1002/ejhf.2451
  • Van der Sluijs KM, Bakker EA, Schuijt TJ, et al. Long-term cardiovascular health status and physical functioning of nonhospitalized patients with COVID-19 compared with non-COVID-19 controls. Am J Physiol Heart Circ Physiol. 2023;324:47–56.
  • Abers MS, Delmonte OM, Ricotta EE, et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight. 2021;2021:6.
  • Gelzo M, Cacciapuoti S, Pinchera B, et al. Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients. Sci Rep. 2022;12:1212. doi:10.1038/s41598-021-04677-8
  • Ueland T, Holter JC, Holten AR, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J Infect. 2020;81:41–43. doi:10.1016/j.jinf.2020.06.061
  • Lerum TV, Maltzahn NN, Aukrust P, et al. Persistent pulmonary pathology after COVID-19 is associated with high viral load, weak antibody response, and high levels of matrix metalloproteinase-9. Sci Rep. 2021;11:23205. doi:10.1038/s41598-021-02547-x
  • Shi S, Su M, Shen G, et al. Matrix metalloproteinase 3 as a valuable marker for patients with COVID-19. J Med Virol. 2021;93:528–532. doi:10.1002/jmv.26235
  • Springall R, Gonzalez-Florez J, Garcia-Avila C, et al. Elevated levels of soluble CD147 are associated with hyperinflammation and disease severity in COVID-19: a proof-of-concept clinical study. Arch Immunol Ther Exp (Warsz). 2022;70:18. doi:10.1007/s00005-022-00657-6
  • Wang M, Kim SH, Monticone RE, et al. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension. 2015;65:698–703. doi:10.1161/HYPERTENSIONAHA.114.03618
  • Bruno RM, Spronck B, Hametner B, et al. Covid-19 effects on arterial stiffness and vascular ageing: CARTESIAN study rationale and protocol. Artery Res. 2020;27:59. doi:10.2991/artres.k.201124.001
  • Esobi I, Lasode M, Anyanwu C, et al. Nutritional impact of COVID-19 and its implications on atherosclerosis. World. 2020;8(1):16–21.
  • Kotlyarov S. Diversity of lipid function in atherogenesis: a focus on endothelial mechanobiology. Int J Mol Sci. 2021;22:11545. doi:10.3390/ijms222111545
  • Vinciguerra M, Romiti S, Fattouch K, et al. Atherosclerosis as pathogenetic substrate for Sars-Cov2 cytokine storm. J Clin Med. 2020;9:2095. doi:10.3390/jcm9072095
  • Kotlyarov S. Immune function of endothelial cells: evolutionary aspects, molecular biology and role in atherogenesis. Int J Mol Sci. 2022;23:9770. doi:10.3390/ijms23179770
  • Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid metabolism in macrophages: focus on atherosclerosis. Biomedicines. 2020;8(8):262. doi:10.3390/biomedicines8080262
  • Sagris M, Theofilis P, Antonopoulos AS, et al. Inflammatory mechanisms in COVID-19 and atherosclerosis: current pharmaceutical perspectives. Int J Mol Sci. 2021;22:6607. doi:10.3390/ijms22126607
  • Kotlyarov S, Kotlyarova A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int J Mol Sci. 2022;23:1308. doi:10.3390/ijms23031308
  • Grzegorowska O, Lorkowski J. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19. J Clin Med. 2020;9:3746. doi:10.3390/jcm9113746
  • Surma S, Banach M, Lewek J. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection. Lipids Health Dis. 2021;20(1):141. doi:10.1186/s12944-021-01563-0
  • Radenkovic D, Chawla S, Pirro M, et al. Cholesterol in relation to COVID-19: should we care about It? J Clin Med. 2020;9:1909. doi:10.3390/jcm9061909
  • Wang H, Yuan Z, Pavel MA, et al. Cholesterol and COVID19 lethality in elderly. bioRxiv. 2020;10:2020–2025.
  • Luo W, Yu H, Gou J, et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints. 2020;2020:2020020407.
  • Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531–538. doi:10.1007/s00392-020-01626-9
  • Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371. doi:10.1016/j.jacc.2020.03.031
  • Wang Q. Molecular genetics of coronary artery disease. Curr Opin Cardiol. 2005;20(3):182–188. doi:10.1097/01.hco.0000160373.77190.f1
  • Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–344. doi:10.1038/nrg.2016.160
  • Aursulesei Onofrei V, Ceasovschih A, Anghel RC, et al. Subendocardial viability ratio predictive value for cardiovascular risk in hypertensive patients. Medicina. 2023;59(1):24. doi:10.3390/medicina59010024
  • Zahmatkeshan N, Khademian Z, Zarshenas L, et al. Experience of adherence to treatment among patients with coronary artery disease during the COVID-19 pandemic: a qualitative study. Health Promot Perspect. 2021;11(4):467–475. doi:10.34172/hpp.2021.59
  • Anghel L, Tudurachi BS, Leonte A, et al. The challenge of high coronary thrombotic events in patients with ST-segment elevation myocardial infarction and COVID-19. J Clin Med. 2022;11:6542. doi:10.3390/jcm11216542
  • Maehl N, Bleckwenn M, Riedel-Heller SG, et al. The impact of the COVID-19 pandemic on avoidance of health care, symptom severity, and mental well-being in patients with coronary artery disease. Front Med. 2021;8:760265. doi:10.3389/fmed.2021.760265
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054‐1062. doi:10.1016/S0140-6736(20)30566-3
  • Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720. doi:10.1056/NEJMoa2002032
  • Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi:10.1001/jamacardio.2020.0950
  • Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis. 2010;10(2):83–92. doi:10.1016/S1473-3099(09)70331-7
  • Timpau AS, Miftode RS, Leca D, et al. A real Pandora’s box in pandemic times: a narrative review on the acute cardiac injury due to COVID-19. Life. 2022;12:1085. doi:10.3390/life12071085
  • Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2040. doi:10.1182/blood.2020006000
  • De Michele S, Sun Y, Yilmaz MM. Forty postmortem examinations in COVID-19 patients. Am J Clin Pathol. 2020;154(6):748–760. doi:10.1093/ajcp/aqaa156
  • De Donato G, Pasqui E, Alba G, et al. The Limitations of social behaviour imposed by Covid-19 impacted the perception and the evolution of peripheral arterial disease negatively. Ann Vasc Surg. 2021;73:107–113. doi:10.1016/j.avsg.2021.02.003
  • Bermejo-Martin JF, Almansa R, Torres A, et al. Covid-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020;116:132–133. doi:10.1093/cvr/cvaa140
  • Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in Covid-19. Lancet. 2020;395:1417–1418. doi:10.1016/S0140-6736(20)30937-5
  • Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi:10.1111/j.1365-2249.2004.02415.x
  • Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–1687. doi:10.1093/cvr/cvaa106
  • Duca ȘT, Chetran A, Miftode RȘ, et al. Myocardial ischemia in patients with COVID-19 infection: between pathophysiological mechanisms and electrocardiographic findings. Life. 2022;12:1015. doi:10.3390/life12071015
  • Yu CM, Wong RS, Wu EB, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82(964):140–144. doi:10.1136/pgmj.2005.037515
  • Mahallawi WH, Khabour OF, Zhang Q, et al. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi:10.1016/j.cyto.2018.01.025
  • Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193. doi:10.1016/j.chom.2016.01.007
  • Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. JAHA. 2014;3(2):000582. doi:10.1161/JAHA.113.000582
  • Goeller M, Achenbach S, Marwan M, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12(1):67–73. doi:10.1016/j.jcct.2017.11.007
  • Mordi IR, Badar AA, Irving RJ, et al. Efficacy of noninvasive cardiac imaging tests in diagnosis and management of stable coronary artery disease. Vasc Health Risk Manag. 2017;13:427–437. doi:10.2147/VHRM.S106838
  • Araiza-Garaygordobil D, Montalto C, Martinez-Amezcua P, et al. Impact of the COVID-19 pandemic on hospitalizations for acute coronary syndromes: a multinational study. QJM. 2021;114(9):642–647. doi:10.1093/qjmed/hcab013
  • Kui L, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J. 2020;133(9):1025–1031. doi:10.1097/CM9.0000000000000744
  • Kermali M, Khalsa RK, Pillai K, et al. The role of biomarkers in diagnosis of COVID-19 – a systematic review. Life Sci. 2020;254:117788. doi:10.1016/j.lfs.2020.117788
  • Mukhitdinova O, Alyavi BA, Ubaydullaeva ZZ, et al. Changes of blood D-dimer level after COVID-19 in patients with coronary heart disease. Eur Heart J Acute Cardiovasc Care. 2022;11(Suppl 1):zuac041.136. doi:10.1093/ehjacc/zuac041.136
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5
  • Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390–391. doi:10.1016/j.pcad.2020.03.001
  • Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;27:201017.
  • Clerkin KJ, Fried JA, Raikhelkar J. COVID-19 and cardiovascular disease. Circulation. 2020;141:1648–1655. doi:10.1161/CIRCULATIONAHA.120.046941
  • Wei ZY, Qian HY. Myocardial injury in patients with COVID-19 pneumonia. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:006.
  • Garg A, Seeliger B, Derda AA, et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail. 2021;23(3):468–475. doi:10.1002/ejhf.2096
  • Miyashita Y, Yoshida T, Takagi Y, et al. Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. NPJ Vaccines. 2022;7(1):16. doi:10.1038/s41541-022-00439-3
  • Dingsdag SA, Clay OK, Quintero GA. COVID-19 severity, miR-21 targets, and common human genetic variation. Letter regarding the article ‘Circulating cardiovascular microRNAs in critically ill COVID-19 patients’. Eur J Heart Fail. 2021;23(11):1986–1987. doi:10.1002/ejhf.2317
  • Silva AB, Siqueira S, de Assis Soares WR, et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4):700. doi:10.3390/v13040700
  • Ortega-Paz L, Capodanno D, Montalescot G, et al. Coronavirus disease 2019-associated thrombosis and coagulopathy: review of the pathophysiological characteristics and implications for antithrombotic management. J Am Heart Assoc. 2021;10(3):019650. doi:10.1161/JAHA.120.019650
  • Kotlyarov S, Kotlyarova A. Molecular pharmacology of inflammation resolution in atherosclerosis. Int J Mol Sci. 2022;23:4808. doi:10.3390/ijms23094808
  • Morrison FJ, Su M, Turchin A. COVID-19 outcomes in patients taking cardioprotective medications. PLoS One. 2022;17(10):e0275787. doi:10.1371/journal.pone.0275787
  • Ganjali S, Bianconi V, Penson PE, et al. Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020;113:154375. doi:10.1016/j.metabol.2020.154375
  • Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci. 2021;17(3):579–595. doi:10.5114/aoms/132950
  • Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metabol. 2020;32(2):176–187. doi:10.1016/j.cmet.2020.06.015
  • Barkas F, Milionis H, Anastasiou G, et al. Statins and PCSK9 inhibitors: what is their role in coronavirus disease 2019? Med Hypotheses. 2021;146:110452. doi:10.1016/j.mehy.2020.110452
  • Vahedian-Azimi A, Mohammadi SM, Banach M, et al. Improved COVID-19 outcomes following statin therapy: an updated systematic review and meta-analysis. Biomed Res Int. 2021;2021:1901772. doi:10.1155/2021/1901772
  • De Spiegeleer A, Bronselaer A, Teo JT, et al. The effect of ARBs, ACEis, and statins on clinical outcomes of COVID-19 infection among nursing home residents. J Am Med Dir Assoc. 2020;21:909–914. doi:10.1016/j.jamda.2020.06.018
  • Mannarino MR, Bianconi V, Cosentini E, et al. Thyroid-stimulating hormone predicts total cholesterol and low-density lipoprotein cholesterol reduction during the acute phase of COVID-19. J Clin Med. 2022;11:3347. doi:10.3390/jcm11123347
  • Kouhpeikar H, Khosaravizade Tabasi H, Khazir Z, et al. Statin use in COVID-19 hospitalized patients and outcomes: a retrospective study. Front Cardiovasc Med. 2022;9:820260. doi:10.3389/fcvm.2022.820260
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. doi:10.1016/S2213-2600(20)30116-8
  • Caputo I, Caroccia B, Frasson I, et al. Angiotensin II promotes SARS-CoV-2 Infection via upregulation of ACE2 in human bronchial cells. Int J Mol Sci. 2022;23(9):5125. doi:10.3390/ijms23095125
  • Cremer S, Pilgram L, Berkowitsch A, et al. LEOSS study group. Angiotensin II receptor blocker intake associates with reduced markers of inflammatory activation and decreased mortality in patients with cardiovascular comorbidities and COVID-19 disease. PLoS One. 2021;16(10):e0258684. doi:10.1371/journal.pone.0258684
  • Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671–1681. doi:10.1161/CIRCRESAHA.120.317134
  • Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, et al. Effects of β-blockers on the sympathetic and cytokines storms in Covid-19. Front Immunol. 2021;12:749291. doi:10.3389/fimmu.2021.749291
  • Alsagaff MY, Mulia EPB. Hypertension and COVID-19: potential use of beta-blockers and a call for randomized evidence. Indian Heart J. 2021;73(6):757–759. doi:10.1016/j.ihj.2021.10.011
  • Hurlimann D, Forster A, Noll G, et al. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumathoid arthritis. Circulation. 2002;106:2184–2187. doi:10.1161/01.CIR.0000037521.71373.44
  • Ascierto PA, Fox B, Urba W, et al. Insights from immuno-oncology: the Society for immunotherapy of cancer statement on access to IL-6-targeting therapies for COVID-19. J Immunother Cancer. 2020;8:e000878. doi:10.1136/jitc-2020-000878
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi:10.1038/s41422-020-0282-0
  • Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382:1787–1799. doi:10.1056/NEJMoa2001282
  • Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature review. J Cardiovasc Dev Dis. 2021;8:18. doi:10.3390/jcdd8020018
  • Baigent C, Windecker S, Andreini D, et al. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 2—care pathways, treatment, and follow-up. Eur Heart J. 2021;43:1059–1103.
  • Govil SR, Weidner G, Merritt-Worden T, et al. Socioeconomic status and improvements in lifestyle, coronary risk factors, and quality of life: the multisite cardiac lifestyle intervention program. Am J Public Health. 2009;99:1263–1270. doi:10.2105/AJPH.2007.132852
  • Jankowski P, Kosior DA, Sowa P, et al. Secondary prevention of coronary artery disease in Poland. results from the Polaspire Survey. Cardiol J. 2020;27(5):533–540. doi:10.5603/CJ.a2020.0072
  • Hamer M, Kivimäki M, Gale CR, et al. Lifestyle risk factors, inflammatory mechanisms, and covid-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184–187. doi:10.1016/j.bbi.2020.05.059
  • Gaudel P, Neupane S, Koivisto AM, et al. Effects of intervention on lifestyle changes among coronary artery disease patients: a 6‐month follow‐up study. Nurs Open. 2022;9:2024–2036. doi:10.1002/nop2.1212
  • Lamberti N, Straudi S, Manfredini R, et al. Don’t stop walking: the in-home rehabilitation program for peripheral artery disease patients during the COVID-19 pandemic. Intern Emerg Med. 2021;16(5):1307–1315. doi:10.1007/s11739-020-02598-4
  • Aboyans V, Ricco J, Bartelink M, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816. doi:10.1093/eurheartj/ehx095
  • Hageman D, Fokkenrood HJP, van den Houten LNM, et al. Supervised exercise therapy versus home‐based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst Rev. 2018;2018:4.
  • Panzavolta C, Zalunardo B, Irsara S, et al. Peripheral artery disease, the ‘lost syndrome’ during lockdown for COVID‑19: a report of three cases. Med Int. 2021;1(5):15. doi:10.3892/mi.2021.15
  • Stabile E, Piccolo R, Franzese M, et al. A cross-sectional study evaluating hospitalization rates for chronic limb threatening ischemia during the COVID-19 outbreak in Campania, Italy. Vasc Med. 2021;26(2):174–179. doi:10.1177/1358863X20977678
  • Smolderen KG, Lee M, Arora T, et al. Peripheral artery disease and COVID-19 outcomes: insights from the Yale DOM-CovX Registry. Curr Probl Cardiol. 2021;47:101007. doi:10.1016/j.cpcardiol.2021.101007
  • Etkin Y, Conway AM, Silpe J, et al. Acute arterial thromboembolism in patients with COVID-19 in the New York City area. Ann Vasc Sur. 2021;70:290–294. doi:10.1016/j.avsg.2020.08.085
  • Indes JE, Koleilat I, Hatch AN, et al. Early experience with arterial thromboembolic complications in patients with COVID-19. J Vasc Surg. 2021;73(2):381–389. doi:10.1016/j.jvs.2020.07.089
  • Rastogi A, Dogra H, Jude EB. COVID-19 and peripheral arterial complications in people with diabetes and hypertension: a systematic review. Diabetes Metab Syndr. 2021;15(5):102204. doi:10.1016/j.dsx.2021.102204
  • Laksono S, Siregar RH, Kusharsamita H. Chronic limb ischemia manifestation in COVID-19 infection: awareness and treatment in primary care. Univ Med. 2021;40(2):163–172. doi:10.18051/UnivMed.2021.v40.166-175
  • Goudarzi E, Yousefimoghaddam F, Ramandi A, et al. COVID-19 and peripheral artery thrombosis: a mini review. Curr Probl Cardiol. 2021;2021:100992.
  • Tran B. Assessment and management of peripheral arterial disease: what every cardiologist should know. Heart. 2021;107(22):1835–1843. doi:10.1136/heartjnl-2019-316164
  • Saenz-Pipao G, Martinez-Aguilar E, Orbe J, et al. The role of circulating biomarkers in peripheral arterial disease. Int J Mol Sci. 2021;22(7):3601. doi:10.3390/ijms22073601
  • Signorelli S, Anzaldi M, Libra M, et al. Plasma levels of inflammatory biomarkers in peripheral arterial disease. Angiology. 2016;67:870–874. doi:10.1177/0003319716633339
  • Eshaq AM, Almofadhli AA, Aljarba NK, et al. Acute limb ischemia as a concomitant manifestation of COVID-19. Cureus. 2022;14(1). doi:10.7759/cureus.21032
  • McCann AB, Jaff MR. Treatment strategies for peripheral artery disease. Expert Opin Pharmacother. 2009;10(10):1571–1586. doi:10.1517/14656560902988502
  • Aursulesei Onofrei V, Ceasovschih A, Marcu DTM, et al. Mortality risk assessment in peripheral arterial disease—the burden of cardiovascular risk factors over the years: a single center’s experience. Diagnostics. 2022;12:2499. doi:10.3390/diagnostics12102499
  • Bianconi V, Mannarino MR, Figorilli F, et al. Low brachial artery flow-mediated dilation predicts worse prognosis in hospitalized patients with COVID-19. J Clin Med. 2021;10:5456. doi:10.3390/jcm10225456
  • Ritti-Dias RM, Correia MA, Carvalho JF, et al. Impact of the COVID-19 pandemic on health lifestyle in patients with peripheral artery disease: a cross-sectional study. J Vasc Nurs. 2022;40(1):54–58. doi:10.1016/j.jvn.2022.01.001
  • Anghel R, Adam CA, Marcu DTM, et al. Cardiac rehabilitation in peripheral artery disease in a tertiary center-impact on arterial stiffness and functional status after 6 months. Life. 2022;12(4):601. doi:10.3390/life12040601
  • Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–3337. doi:10.1093/eurheartj/ehab484
  • Akinrinmade AO, Obitulata-Ugwu VO, Obijiofor NB, et al. COVID-19 and acute coronary syndrome: a literature review. Cureus. 2022;14(9):e29747. doi:10.7759/cureus.29747
  • Padureanu V, Bogdan M, Subtirelu MS, et al. Perceptions of COVID-19 vaccination among healthcare professionals in Romania. Rev Med Chir Soc. 2020;124(3):454–460.
  • Ulinici M, Suljič A, Poggianella M, et al. Characterisation of the antibody response in sinopharm (BBIBP-CorV) recipients and COVID-19 Convalescent Sera from the Republic of Moldova. Vaccines. 2023;11:637.
  • Zafar U, Zafar H, Ahmed MS, et al. Link between COVID-19 vaccines and myocardial infarction. World J Clin Cases. 2022;10(28):10109–10119. doi:10.12998/wjcc.v10.i28.10109
  • Ho JS, Sia CH, Ngiam JN, et al. A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J. 2021;2021:1.
  • Jeet Kaur R, Dutta S, Charan J, et al. Cardiovascular adverse events reported from COVID-19 vaccines: a study based on WHO database. Int J Gen Med. 2021;14(3):909–927. doi:10.2147/IJGM.S299531
  • Baden LR, El Sahly HM, Essink B, et al; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389
  • Kim YE, Huh K, Park YJ, et al. Association between vaccination and acute myocardial infarction and ischemic stroke after COVID-19 infection. JAMA. 2022;328(9):887–889. doi:10.1001/jama.2022.12992
  • Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–590. doi:10.1038/s41591-022-01689-3
  • Botton J, Jabagi MJ, Bertrand M, et al. Risk for myocardial infarction, stroke, and pulmonary embolism following COVID-19 vaccines in adults younger than 75 years in France. Ann Intern Med. 2022;175(9):1250–1257. doi:10.7326/M22-0988
  • Maadarani O, Bitar Z, Elzoueiry M, et al. Myocardial infarction post COVID-19 vaccine - coincidence, Kounis syndrome or other explanation - time will tell. JRSM Open. 2021;12(8):20542704211025259. doi:10.1177/20542704211025259
  • Balta A, Ceasovschih A, Șorodoc V, et al. Broad electrocardiogram syndromes spectrum: from common emergencies to particular electrical heart disorders. J Pers Med. 2022;12:1754. doi:10.3390/jpm12111754
  • Bilotta C, Perrone G, Adelfio V, et al. COVID-19 vaccine-related thrombosis: a systematic review and exploratory analysis. Front Immunol. 2021;12:729251. doi:10.3389/fimmu.2021.729251
  • Fazlollahi A, Zahmatyar M, Noori M, et al. Cardiac complications following mRNA COVID-19 vaccines: a systematic review of case reports and case series. Rev Med Virol. 2022;32(4):e2318. doi:10.1002/rmv.2318
  • Satterfield BA, Bhatt DL, Gersh BJ. Cardiac involvement in the long-term implications of COVID-19. Nat Rev Cardiol. 2022;19(5):332–341. doi:10.1038/s41569-021-00631-3
  • Barda N, Dagan N, Ben-Shlomo Y, et al. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2021;385:1078–1090. doi:10.1056/NEJMoa2110475
  • Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel. N Engl J Med. 2021;385:2140–2149. doi:10.1056/NEJMoa2109730
  • Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022;327:331–340. doi:10.1001/jama.2021.24110
  • Ling RR, Ramanathan K, Tan FL, et al. Myopericarditis following COVID-19 vaccination and non-COVID-19 vaccination: a systematic review and meta-analysis. Lancet Respir Med. 2022;10:679–688. doi:10.1016/S2213-2600(22)00059-5
  • Chin SE, Bhavsar SM, Corson A, et al. Cardiac complications associated with COVID-19, MIS-C, and mRNA COVID-19 vaccination. Pediatr Cardiol. 2022;43(3):483–488. doi:10.1007/s00246-022-02851-x
  • Marschner CA, Shaw KE, Tijmes FS, et al. Myocarditis following COVID-19 vaccination. Cardiol Clin. 2022;40(3):375–388. doi:10.1016/j.ccl.2022.05.002
  • Li YE, Wang S, Reiter RJ, et al. Clinical cardiovascular emergencies and the cellular basis of COVID-19 vaccination: from dream to reality? Int J Infect Dis. 2022;124:1–10. doi:10.1016/j.ijid.2022.08.026
  • Parsamanesh N, Karami-Zarandi M, Banach M, et al. Effects of statins on myocarditis: a review of underlying molecular mechanisms. Prog Cardiovasc Dis. 2021;67:53–64. doi:10.1016/j.pcad.2021.02.008
  • Hana D, Patel K, Roman S, et al. Clinical cardiovascular adverse events reported post-COVID-19 vaccination: are they a real risk? Curr Probl Cardiol. 2022;47(3):101077. doi:10.1016/j.cpcardiol.2021.101077
  • Liu R, Pan J, Zhang C, et al. Cardiovascular complications of COVID-19 vaccines. Front Cardiovasc Med. 2022;9:840929. doi:10.3389/fcvm.2022.840929