310
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases

, , , , , ORCID Icon, , , & ORCID Icon show all
Pages 3593-3617 | Received 21 Apr 2023, Accepted 02 Aug 2023, Published online: 23 Aug 2023

References

  • Xu S, Jin T, Weng J. Endothelial cells as a key cell type for innate immunity: a focused review on RIG-I signaling pathway. Front Immunol. 2022;13:951614. doi:10.3389/fimmu.2022.951614
  • Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73(3):924–967. doi:10.1124/pharmrev.120.000096
  • Theofilis P, Sagris M, Oikonomou E, et al. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 2021;9(7):781. doi:10.3390/biomedicines9070781
  • Michiels C. Endothelial cell functions. Cell Physiol. 2003;196(3):430–443. doi:10.1002/jcp.10333
  • Coggins M, Rosenzweig A. The fire within: cardiac inflammatory signaling in health and disease. Circ Res. 2012;110(1):116–125. doi:10.1161/CIRCRESAHA.111.243196
  • Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014;306(3):H317–H325. doi:10.1152/ajpheart.00182.2013
  • Hellenthal KEM, Brabenec L, Wagner NM. Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells. 2022;11(12):1935. doi:10.3390/cells11121935
  • Tu Z, Zhong Y, Hu H, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater. 2022;7(7):557–574. doi:10.1038/s41578-022-00426-z
  • Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. doi:10.1038/s41591-019-0675-0
  • Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov. 2016;15(2):125–142. doi:10.1038/nrd.2015.2
  • Pop RM, Popolo A, Trifa AP, Stanciu LA. Phytochemicals in cardiovascular and respiratory diseases: evidence in oxidative stress and inflammation. Oxid Med Cell Longev. 2018;2018:1603872. doi:10.1155/2018/1603872
  • Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–340. doi:10.1038/nrneph.2011.51
  • Donato A, Black A, Jablonski K, Gano L, Seals D. Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7(6):805–812. doi:10.1111/j.1474-9726.2008.00438.x
  • Jablonski K, Chonchol M, Pierce G, Walker A, Seals D. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011;57(1):63–69. doi:10.1161/HYPERTENSIONAHA.110.160929
  • Walker A, Kaplon R, Pierce G, Nowlan M, Seals D. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB. Clin Sci. 2014;127(11):645–654. doi:10.1042/CS20140030
  • Alexander Y, Osto E, Schmidt-Trucksass A, et al. Endothelial function in cardiovascular medicine: a consensus paper of the European society of cardiology working groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis. Cardiovasc Res. 2021;117(1):29–42. doi:10.1093/cvr/cvaa085
  • Kalucka J, Bierhansl L, Conchinha NV, et al. Quiescent endothelial cells upregulate fatty acid beta-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 2018;28(6):881–894 e813. doi:10.1016/j.cmet.2018.07.016
  • Shah AV, Birdsey GM, Peghaire C, et al. The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signalling and vascular stability. Nat Commun. 2017;8:16002. doi:10.1038/ncomms16002
  • Sena CM, Carrilho F, Seiça RM. Endothelial dysfunction in type 2 diabetes: targeting inflammation. Endoth Dysf. 2018;24:23110.
  • Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77(4):487–495. doi:10.1189/jlb.0904554
  • Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109(21 Suppl 1):II27–33. doi:10.1161/01.CIR.0000129501.88485.1f
  • Tousoulis D, Antoniades C, Stefanadis C. Evaluating endothelial function in humans: a guide to invasive and non-invasive techniques. Heart. 2005;91(4):553–558. doi:10.1136/hrt.2003.032847
  • Valenzuela CA, Baker EJ, Miles EA, Calder PC. Eighteen‑carbon trans fatty acids and inflammation in the context of atherosclerosis. Prog Lipid Res. 2019;76:101009. doi:10.1016/j.plipres.2019.101009
  • Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020;10(10):200161. doi:10.1098/rsob.200161
  • Okamoto T, Park EJ, Kawamoto E, et al. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis. 2021;1867(9):166168. doi:10.1016/j.bbadis.2021.166168
  • Brocq ML, Leslie SJ, Milliken P, Megson IL. Endothelial dysfunction: from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid Redox Signal. 2008;10(9):1631–1674. doi:10.1089/ars.2007.2013
  • Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–190. doi:10.1161/01.RES.0000255690.03436.ae
  • Tracy R. Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int J Obes Relat Metab Disord. 2003;27(3):S29–S34. doi:10.1038/sj.ijo.0802497
  • Ricci N, Cunha A. Physical Exercise for Frailty and Cardiovascular Diseases. Adv Exp Med Biol. 2020;1216:115–129.
  • Eloueyk A, Osta B, Alameldinne R, Awad D. Uremic serum induces inflammation in cultured human endothelial cells and triggers vascular repair mechanisms. Inflammation. 2019;42(6):2003–2010. doi:10.1007/s10753-019-01061-7
  • Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. doi:10.1038/s41392-022-00955-7
  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi:10.1038/nri2925
  • Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. doi:10.1038/s41572-019-0106-z
  • Lu J, Chen X, Xu X, et al. Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-α/ABCA1 pathway. Biom Pharmacoth. 2019;115:108840. doi:10.1016/j.biopha.2019.108840
  • Ross R. Atherosclerosis—an inflammatory disease. New England J Med. 1999;340(2):115–126. doi:10.1056/NEJM199901143400207
  • Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–533. doi:10.1038/s41586-021-03392-8
  • Libby P, Hansson GK. From focal lipid storage to systemic inflammation. J Am Coll Cardiol. 2019;74(12):1594–1607. doi:10.1016/j.jacc.2019.07.061
  • Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–636. doi:10.1161/CIRCRESAHA.115.306301
  • Mussbacher M, Schossleitner K, Kral-Pointner JB, Salzmann M, Schrammel A, Schmid JA. More than just a monolayer: the multifaceted role of endothelial cells in the pathophysiology of atherosclerosis. Curr Atheroscler Rep. 2022;24(6):483–492. doi:10.1007/s11883-022-01023-9
  • Xu K, Saaoud F, Yu S, et al. Monocyte adhesion assays for detecting endothelial cell activation in vascular inflammation and atherosclerosis. Atherosclerosis. 2022;2022:169–182.
  • Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788–791. doi:10.1126/science.1990440
  • Lusis A. Atherosclerosis. Nature. 2000;407(6801):233–241. doi:10.1038/35025203
  • Rader DJ, Puré E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 2005;1(4):223–230. doi:10.1016/j.cmet.2005.03.005
  • Hu W, Lu H, Zhang J, et al. Kruppel-like factor 14, a coronary artery disease associated transcription factor, inhibits endothelial inflammation via NF-kappaB signaling pathway. Atherosclerosis. 2018;278:39–48.
  • Qin M, Wang W, Zhou H, Wang X, Wang F, Wang H. Circular RNA circ_0003645 silencing alleviates inflammation and apoptosis via the NF-κB pathway in endothelial cells induced by oxLDL. Gene. 2020;755:144900. doi:10.1016/j.gene.2020.144900
  • Yu J, Ming H, Li HY, et al. IMM-H007, a novel small molecule inhibitor for atherosclerosis, represses endothelium inflammation by regulating the activity of NF-κB and JNK/AP1 signaling. Toxicol Appl Pharmacol. 2019;381:114732. doi:10.1016/j.taap.2019.114732
  • Zhang Y, Guan Q, Wang Z. PTP1B inhibition ameliorates inflammatory injury and dysfunction in ox-LDL-induced HUVECs by activating the AMPK/SIRT1 signaling pathway via negative regulation of KLF2. Exp Ther Med. 2022;24(1):467. doi:10.3892/etm.2022.11394
  • Chen M, Li W, Zhang Y, Yang J. MicroRNA-20a protects human aortic endothelial cells from Ox-LDL-induced inflammation through targeting TLR4 and TXNIP signaling. Biom Pharmacoth. 2018;103:191–197. doi:10.1016/j.biopha.2018.03.129
  • Chen L, Qin L, Liu X, Meng X. CTRP3 alleviates Ox-LDL–induced inflammatory response and endothelial dysfunction in mouse aortic endothelial cells by activating the PI3K/Akt/eNOS pathway. Inflammation. 2019;42(4):1350–1359. doi:10.1007/s10753-019-00996-1
  • Liu Y, Tie L. Apolipoprotein M and sphingosine-1-phosphate complex alleviates TNF-α-induced endothelial cell injury and inflammation through PI3K/AKT signaling pathway. BMC Cardiovasc Disord. 2019;19(1):1–9. doi:10.1186/s12872-019-1263-4
  • Xu K, Zhao H, Qiu X, Liu X, Zhao F, Zhao Y. VGLL4 Protects against oxidized-LDL-Induced Endothelial cell dysfunction and inflammation by activating Hippo-YAP/TEAD1 signaling pathway. Mediators Inflamm. 2020;2020:1–9. doi:10.1155/2020/8292173
  • Xu K, Xiwen L, Ren G, Yin D, Guo S, Zhao Y. Depletion of CPEB1 protects against oxidized LDL-induced endothelial apoptosis and inflammation though SIRT1/LOX-1 signalling pathway. Life Sci. 2019;239:116874. doi:10.1016/j.lfs.2019.116874
  • Ou HC, Chou WC, Hung CH, et al. Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway. Environ Toxicol. 2019;34(7):825–835. doi:10.1002/tox.22750
  • Sun P, Li L, Liu Y, et al. MiR-181b regulates atherosclerotic inflammation and vascular endothelial function through Notch1 signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(7):3051–3057. doi:10.26355/eurrev_201904_17587
  • Gao ZF, Ji XL, Gu J, Wang XY, Ding L, Zhang H. microRNA‐107 protects against inflammation and endoplasmic reticulum stress of vascular endothelial cells via KRT1‐dependent Notch signaling pathway in a mouse model of coronary atherosclerosis. J Cell Physiol. 2019;234(7):12029–12041. doi:10.1002/jcp.27864
  • Ding J, Li Z, Li L, et al. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction and permeability via the mitogen-activated protein kinase pathway in a rabbit model of atherosclerosis. Biom Pharmacoth. 2020;128:110258. doi:10.1016/j.biopha.2020.110258
  • Yang S, Mi X, Chen Y, et al. MicroRNA‐216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. J Cell Mol Med. 2018;22(5):2739–2749. doi:10.1111/jcmm.13567
  • Kutryb-Zajac B, Mierzejewska P, Sucajtys-Szulc E, et al. Inhibition of LPS-stimulated ecto-adenosine deaminase attenuates endothelial cell activation. J Mol Cell Cardiol. 2019;128:62–76. doi:10.1016/j.yjmcc.2019.01.004
  • Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. J Cell Mol Med. 2016;20(12):2318–2327. doi:10.1111/jcmm.12923
  • Zhao S, Liang M, Wang Y, et al. Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol Ther. 2019;24(3):278–287. doi:10.1177/1074248418810809
  • Zhong Y, He S, Huang K, Liang M. Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Arch Biochem Biophys. 2020;696:108595. doi:10.1016/j.abb.2020.108595
  • Zhang S, Xie S, Gao Y, Wang Y. Triptolide alleviates oxidized LDL-induced endothelial inflammation by attenuating the oxidative stress-mediated nuclear factor-kappa B pathway. Curr Ther Res Clin Exp. 2022;97:100683. doi:10.1016/j.curtheres.2022.100683
  • Lee SH, Han AR, Kim BM, Jeong Sung M, Hong SM. Lactococcus lactis-fermented spinach juice suppresses LPS-induced expression of adhesion molecules and inflammatory cytokines through the NF-kappaB pathway in HUVECs. Exp Ther Med. 2022;23(6):390. doi:10.3892/etm.2022.11317
  • Li X, Tang Y, Ma B, et al. The peptide lycosin-I attenuates TNF-α-induced inflammation in human umbilical vein endothelial cells via IκB/NF-κB signaling pathway. Inflammat Res. 2018;67(5):455–466. doi:10.1007/s00011-018-1138-7
  • Zhou YQ, Zhao YT, Zhao XY, et al. Hyperoside suppresses lipopolysaccharide-induced inflammation and apoptosis in human umbilical vein endothelial cells. Curr Med Sci. 2018;38(2):222–228. doi:10.1007/s11596-018-1869-2
  • Mohd Ariff A, Abu Bakar NA, Omar E, et al. Ficus deltoidea suppresses endothelial activation, inflammation, monocytes adhesion and oxidative stress via NF-κB and eNOS pathways in stimulated human coronary artery endothelial cells. BMC Complement Med Therap. 2020;20(1):1–13. doi:10.1186/s12906-020-2844-6
  • Hu H, Wang C, Jin Y, et al. Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-kappaB and GRP78/PERK pathways in human aorta endothelial cells. Inflammation. 2019;42(1):64–80. doi:10.1007/s10753-018-0873-9
  • Luo L, Liang H, Liu L. Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-kappaB signalling pathway. Pharm Biol. 2022;60(1):56–64. doi:10.1080/13880209.2021.2010775
  • Sun H, Zhu X, Cai W, Qiu L. Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathway. Int J Mol Sci. 2017;18(4):844. doi:10.3390/ijms18040844
  • Wang Y, Hong Y, Zhang C, et al. Picroside II attenuates hyperhomocysteinemia‐induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis. J Cell Mol Med. 2019;23(1):464–475. doi:10.1111/jcmm.13949
  • Zhao H, Liu M, Liu H, Suo R, Lu C. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway. Biosci Rep. 2020;40(3). doi:10.1042/BSR20193431
  • Zhao Z, Wang X, Zhang R, et al. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging. 2021;13(8):11363. doi:10.18632/aging.202829
  • Meng N, Chen K, Wang Y, et al. Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from salvia plebeia R. Br. Inhibit oxLDL-induced endothelial cell injury and restrict atherosclerosis via activating Nrf2 anti-oxidation signal pathway. Molecules. 2022;27(6):1990. doi:10.3390/molecules27061990
  • Sun X, Jiao X, Ma Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun. 2016;481(1–2):63–70. doi:10.1016/j.bbrc.2016.11.017
  • Sun J, Yin X, Liu H, et al. Rapamycin inhibits ox-LDL-induced inflammation in human endothelial cells in vitro by inhibiting the mTORC2/PKC/c-Fos pathway. Acta Pharmacol Sin. 2018;39(3):336–344. doi:10.1038/aps.2017.102
  • Li L, Chen Y, Shi C. Nintedanib ameliorates oxidized low-density lipoprotein -induced inflammation and cellular senescence in vascular endothelial cells. Bioengineered. 2022;13(3):6196–6207. doi:10.1080/21655979.2022.2036913
  • Qu D, Wang L, Huo M, et al. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res. 2020;116(1):226–236. doi:10.1093/cvr/cvz046
  • Zhang G, Qin Q, Zhang C, et al. NDRG1 signaling is essential for endothelial inflammation and vascular remodeling. Circ Res. 2023;132(3):306–319. doi:10.1161/CIRCRESAHA.122.321837
  • Wang L, Gu Z, Li J, et al. Isorhynchophylline inhibits inflammatory responses in endothelial cells and macrophages through the NF-κB/NLRP3 signaling pathway. BMC Complement Med Ther. 2023;23(1):80. doi:10.1186/s12906-023-03902-3
  • Niu N, Xu S, Xu Y, Little PJ, Jin Z-G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol Sci. 2019;40(4):253–266. doi:10.1016/j.tips.2019.02.004
  • Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251–265. doi:10.1038/s41577-021-00584-1
  • Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc Toxicol. 2019;19(1):13–22. doi:10.1007/s12012-018-9493-8
  • Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1–2):33–65. doi:10.1016/j.mam.2004.09.003
  • Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol. 2019;16(8):491–502. doi:10.1038/s41569-019-0176-3
  • Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol. 2022;19(6):379–394. doi:10.1038/s41569-022-00678-w
  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–1422. doi:10.1038/nm.2538
  • Murray K, Mahoney S, Venkatasubramanian R, Seals D, Clayton Z. Aging, aerobic exercise, and cardiovascular health: barriers, alternative strategies and future directions. Exp Gerontol. 2023;173:112105. doi:10.1016/j.exger.2023.112105
  • Kozakova M, Palombo C. Vascular ageing and aerobic exercise. Int J Environ Res Public Health. 2021;18(20):10666. doi:10.3390/ijerph182010666
  • Craighead D, Heinbockel T, Freeberg K, et al. Time-efficient inspiratory muscle strength training lowers blood pressure and improves endothelial function, NO bioavailability, and oxidative stress in midlife/older adults with above-normal blood pressure. J Am Heart Assoc. 2021;10(13):e020980. doi:10.1161/JAHA.121.020980
  • Craighead D, Freeberg K, Maurer G, Myers V, Seals D. Translational potential of high-resistance inspiratory muscle strength training. Exerc Sport Sci Rev. 2022;50(3):107–117. doi:10.1249/JES.0000000000000293
  • Clayton Z, Hutton D, Brunt V, et al. Apigenin restores endothelial function by ameliorating oxidative stress, reverses aortic stiffening, and mitigates vascular inflammation with aging. Am J Physiol Heart Circ Physiol. 2021;321(1):H185–H196. doi:10.1152/ajpheart.00118.2021
  • Freeberg K, Craighead D, Martens C, You Z, Chonchol M, Seals D. Nicotinamide riboside supplementation for treating elevated systolic blood pressure and arterial stiffness in midlife and older adults. Front Cardiovasc Med. 2022;9:881703. doi:10.3389/fcvm.2022.881703
  • Stanhewicz A, Dillon G, Serviente C, Alexander L. Acute systemic inhibition of inflammation augments endothelium-dependent dilation in women with a history of preeclamptic pregnancy. Pregnancy Hypertens. 2022;27:81–86. doi:10.1016/j.preghy.2021.12.010
  • Hingorani A, Cross J, Kharbanda R, et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation. 2000;102(9):994–999. doi:10.1161/01.CIR.102.9.994
  • Greaney J, Saunders E, Alexander L. Short-term salicylate treatment improves microvascular endothelium-dependent dilation in young adults with major depressive disorder. Am J Physiol Heart Circ Physiol. 2022;322(5):H880–H889. doi:10.1152/ajpheart.00643.2021
  • Stapleton P, Minarchick V, Cumpston A, et al. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci. 2012;13(11):13781–13803. doi:10.3390/ijms131113781
  • Nurkiewicz T, Porter D, Barger M, Castranova V, Boegehold M. Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect. 2004;112(13):1299–1306. doi:10.1289/ehp.7001
  • Ward AO, Angelini GD, Caputo M, et al. NF-κB inhibition prevents acute shear stress-induced inflammation in the saphenous vein graft endothelium. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-020-71781-6
  • Zhou X, Cai J, Liu W, Wu X, Gao C. Cysteinyl leukotriene receptor type 1 (CysLT1R) antagonist zafirlukast protects against TNF-α-induced endothelial inflammation. Biom Pharmacoth. 2019;111:452–459. doi:10.1016/j.biopha.2018.12.064
  • You S, Qian J, Wu G, et al. Schizandrin B attenuates angiotensin II induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-κB activation. Phytomedicine. 2019;62:152955. doi:10.1016/j.phymed.2019.152955
  • Reddy AT, Lakshmi SP, Prasad EM, Varadacharyulu NC, Kodidhela LD. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sci. 2020;258:118136. doi:10.1016/j.lfs.2020.118136
  • An Z, Yang G, Nie W, Ren J, Wang D. MicroRNA-106b overexpression alleviates inflammation injury of cardiac endothelial cells by targeting BLNK via the NF-kappaB signaling pathway. J Cell Biochem. 2018;119(4):3451–3463. doi:10.1002/jcb.26517
  • Qian X, Zhu M, Qian W, Song J. Vitamin D attenuates myocardial ischemia–reperfusion injury by inhibiting inflammation via suppressing the RhoA/ROCK/NF‐ĸB pathway. Biotechnol Appl Biochem. 2019;66(5):850–857. doi:10.1002/bab.1797
  • Jiang M, Wang H, Liu Z, et al. Endoplasmic reticulum stress‐dependent activation of iNOS/NO‐NF‐κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J. 2020;34(8):10835–10849. doi:10.1096/fj.202000734R
  • Sun S, Ji Z, Fu J, Wang X, Zhang L. Endosulfan induces endothelial inflammation and dysfunction via IRE1α/NF-κB signaling pathway. Environ Sci Pollut Res Int. 2020;27(21):26163–26171. doi:10.1007/s11356-020-09023-5
  • Zhang H, Liang B, Li T, Zhou Y, Shang D, Du Z. Orexin A suppresses oxidized LDL induced endothelial cell inflammation via MAPK p38 and NF‐κB signaling pathway. IUBMB Life. 2018;70(10):961–968. doi:10.1002/iub.1890
  • Cao X, Bi R, Hao J, et al. A study on the protective effects of taxifolin on human umbilical vein endothelial cells and THP-1 cells damaged by hexavalent chromium: a probable mechanism for preventing cardiovascular disease induced by heavy metals. Food Funct. 2020;11(5):3851–3859. doi:10.1039/D0FO00567C
  • Zhao W, Wu C, Li S, Chen X. Adiponectin protects palmitic acid induced endothelial inflammation and insulin resistance via regulating ROS/IKKβ pathways. Cytokine. 2016;88:167–176. doi:10.1016/j.cyto.2016.09.005
  • Huang Y, Zhang K, Liu M, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine. 2021;91:153633. doi:10.1016/j.phymed.2021.153633
  • Wang M, Peng X, Lian Z, Zhu H. The cordycepin derivative IMM-H007 improves endothelial dysfunction by suppressing vascular inflammation and promoting AMPK-dependent eNOS activation in high-fat diet-fed ApoE knockout mice. Eur J Pharmacol. 2019;852:167–178. doi:10.1016/j.ejphar.2019.02.045
  • Lyu TJ, Zhang ZX, Chen J, Liu ZJ. Ginsenoside Rg1 ameliorates apoptosis, senescence and oxidative stress in ox-LDL-induced vascular endothelial cells via the AMPK/SIRT3/p53 signaling pathway. Exp Ther Med. 2022;24(3):545. doi:10.3892/etm.2022.11482
  • Teixeira TM, Da costa DC, Resende AC, Soulage CO, Bezerra FF, Daleprane JB. Activation of Nrf2-antioxidant signaling by 1, 25-dihydroxycholecalciferol prevents leptin-induced oxidative stress and inflammation in human endothelial cells. J Nutr. 2017;147(4):506–513. doi:10.3945/jn.116.239475
  • Ma Y, Li L, Shao Y, Bai X, Bai T, Huang X. Methotrexate improves perivascular adipose tissue/endothelial dysfunction via activation of AMPK/eNOS pathway. Mol Med Rep. 2017;15(4):2353–2359. doi:10.3892/mmr.2017.6225
  • Deanfield JE, Halcox JP, Rabelink T. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–1295. doi:10.1161/CIRCULATIONAHA.106.652859
  • Yao Mattisson I, Christoffersen C. Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis. 2021;334:76–84. doi:10.1016/j.atherosclerosis.2021.08.039
  • Seino Y, Nanjo K, Tajima N, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;2010:1.
  • Tang R, Li Q, Lv L, et al. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31. doi:10.1186/1475-2840-9-31
  • Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62(1):194–204. doi:10.2337/db12-0420
  • Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101(15):1780–1784. doi:10.1161/01.CIR.101.15.1780
  • Mobasseri M, Ostadrahimi A, Tajaddini A, et al. Effects of saffron supplementation on glycemia and inflammation in patients with type 2 diabetes mellitus: a randomized double-blind, placebo-controlled clinical trial study. Diabetes Metab Syndr. 2020;14(4):527–534. doi:10.1016/j.dsx.2020.04.031
  • Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–444.
  • Gong Y, Zhang Y, Su X, Gao H. Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway. Biochemist Cell Bio. 2020;98(6):669–675. doi:10.1139/bcb-2019-0403
  • Wei H, Gu Q. SOX4 promotes high-glucose-induced inflammation and angiogenesis of retinal endothelial cells by activating NF-kappaB signaling pathway. Open Life Sci. 2022;17(1):393–400. doi:10.1515/biol-2022-0045
  • Fei Y, Sun L, Yuan C, Jiang M, Lou Q, Xu Y. CFTR ameliorates high glucose-induced oxidative stress and inflammation by mediating the NF-κB and MAPK signaling pathways in endothelial cells. Int J Mol Me. 2018;41(6):3501–3508.
  • Cheng J, Liu Q, Hu N, et al. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene. 2019;709:1–7. doi:10.1016/j.gene.2019.05.012
  • Valle ML, Dworshak J, Sharma A, Ibrahim AS, Al-Shabrawey M, Sharma S. Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp Eye Res. 2019;178:27–36. doi:10.1016/j.exer.2018.09.009
  • Wang H, Sun P, Chen W, et al. High glucose stimulates expression of MFHAS1 to mitigate inflammation via Akt/HO-1 pathway in human umbilical vein endothelial cells. Inflammation. 2018;41(2):400–408. doi:10.1007/s10753-017-0696-0
  • Song W, Zhang C-L, Gou L, et al. Endothelial TFEB (transcription factor EB) restrains IKK (IκB kinase)-p65 pathway to attenuate vascular inflammation in diabetic db/db mice. Arterioscler Thromb Vasc Biol. 2019;39(4):719–730. doi:10.1161/ATVBAHA.119.312316
  • Yi J, Gao Z-F. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. Int J Biol Macromol. 2019;130:1–9. doi:10.1016/j.ijbiomac.2019.02.003
  • Wang T, Zhu H, Hou Y, Duan W, Meng F, Liu Y. Ketamine attenuates high-glucose-mediated endothelial inflammation in human umbilical vein endothelial cells. Can J Physiol Pharmacol. 2020;98(3):156–161. doi:10.1139/cjpp-2019-0185
  • Petersen C, Bharat D, Cutler BR, et al. Circulating metabolites of strawberry mediate reductions in vascular inflammation and endothelial dysfunction in db/db mice. Int J Cardiol. 2018;263:111–117. doi:10.1016/j.ijcard.2018.04.040
  • Hu R, Wang MQ, Ni SH, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol. 2020;867:172797. doi:10.1016/j.ejphar.2019.172797
  • Shi X, Wang S, Luan H, et al. Clinopodium chinense attenuates palmitic acid-induced vascular endothelial inflammation and insulin resistance through TLR4-mediated NF-κB and MAPK pathways. Am J Chin Med. 2019;47(01):97–117. doi:10.1142/S0192415X19500058
  • Shu A, Du Q, Chen J, et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chem Biol Interact. 2021;348:109625. doi:10.1016/j.cbi.2021.109625
  • Lin J, Li X, Lin Y, Huang Z, Wu W. Exogenous sodium hydrosulfide protects against high glucose‑induced injury and inflammation in human umbilical vein endothelial cells by inhibiting necroptosis via the p38 MAPK signaling pathway. Mol Med Rep. 2021;23(1):1–1.
  • Ge CY, Yang L, Zhang JL, Wei ZF, Feng F. Spinosin ameliorates insulin resistance by suppressing reactive oxygen species-associated inflammation. Iran J Basic Med Sci. 2022;25(7):850–858. doi:10.22038/IJBMS.2022.64154.14127
  • Yang R, Yang Y. Albiflorin attenuates high glucose-induced endothelial apoptosis via suppressing PARP1/NF-κB signaling pathway. Inflamm Res. 2023;72(1):159–169. doi:10.1007/s00011-022-01666-z
  • Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–1655. doi:10.1378/chest.101.6.1644
  • Kumar S, Tripathy S, Jyoti A, Singh SG. Recent advances in biosensors for diagnosis and detection of sepsis: a comprehensive review. Bio Bioelect. 2019;124:205–215. doi:10.1016/j.bios.2018.10.034
  • Salomao R, Brunialti MKC, Rapozo MM, Baggio-Zappia GL, Galanos C, Freudenberg M. Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. Shock. 2012;38(3):227–242. doi:10.1097/SHK.0b013e318262c4b0
  • van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–420. doi:10.1038/nri.2017.36
  • Schrijver IT, Théroude C, Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol. 2019;10:327. doi:10.3389/fimmu.2019.00327
  • Salomão R, Ferreira B, Salomão M, Santos S, Azevedo L, Brunialti M. Sepsis: evolving concepts and challenges. Braz J Med Biol Res. 2019;52(4):e8595. doi:10.1590/1414-431x20198595
  • Geven C, Peters E, Schroedter M, et al. Effects of the humanized anti-adrenomedullin antibody adrecizumab (HAM8101) on vascular barrier function and survival in rodent models of systemic inflammation and sepsis. Shock. 2018;50(6):648–654. doi:10.1097/SHK.0000000000001102
  • Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991;115(6):457–469. doi:10.7326/0003-4819-115-6-457
  • Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol. 2018;48(10):1607–1620. doi:10.1002/eji.201646789
  • Chen Y, Tang D, Zhu L, et al. hnRNPA2/B1 Ameliorates LPS-Induced Endothelial Injury through NF-κB Pathway and VE-Cadherin/β-catenin signaling modulation in vitro. Mediators Inflamm. 2020;2020. doi:10.1155/2020/6458791
  • Liu Z, Ji J, Zheng D, Su L, Peng T, Tang J. Protective role of endothelial calpain knockout in lipopolysaccharide-induced acute kidney injury via attenuation of the p38-iNOS pathway and NO/ROS production. Exp Mol Med. 2020;52(4):702–712. doi:10.1038/s12276-020-0426-9
  • Lv Y, Kim K, Sheng Y, et al. YAP controls endothelial activation and vascular inflammation through TRAF6. Circ Res. 2018;123(1):43–56. doi:10.1161/CIRCRESAHA.118.313143
  • Zhao S, Gao J, Li J, Wang S, Yuan C, Liu Q. PD-L1 regulates inflammation in LPS-Induced lung epithelial cells and vascular endothelial cells by interacting with the HIF-1α Signaling Pathway. Inflammation. 2021;44(5):1969–1981. doi:10.1007/s10753-021-01474-3
  • Wang Y, Du P, Jiang D. Rigosertib inhibits MEK1–ERK pathway and alleviates lipopolysaccharide‐induced sepsis. Immun Inflam Dis. 2021;9(3):991–999.
  • Huang L, Li Y, Cheng Z, Lv Z, Luo S, Xia Y. PCSK9 promotes endothelial dysfunction during sepsis via the TLR4/MyD88/NF-κB and NLRP3 pathways. Inflammation. 2023;46(1):115–128. doi:10.1007/s10753-022-01715-z
  • Mehta M, Dhanjal DS, Paudel KR, et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology. 2020;28(4):795–817. doi:10.1007/s10787-020-00698-3
  • Arora VK, Chopra KK. Inflammation plays a central role in respiratory diseases, including tuberculosis. Indian J Tuberc. 2018;65(2):103–105. doi:10.1016/j.ijtb.2018.03.001
  • Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM. Autophagy and inflammation in chronic respiratory disease. Autophagy. 2018;14(2):221–232. doi:10.1080/15548627.2017.1389823
  • Huang S, Zeng R, Wang J, et al. Follistatin-like 1 induces the activation of type 2 innate lymphoid cells to promote airway inflammation in asthma. Inflammation. 2022;45(2):904–918. doi:10.1007/s10753-021-01594-w
  • Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367(3):551–569.
  • Wei L, Gou X, Su B, et al. Mahuang decoction attenuates airway inflammation and remodeling in asthma via suppression of the SP1/FGFR3/PI3K/AKT axis. Drug Des Devel Ther. 2022;16:2833–2850. doi:10.2147/DDDT.S351264
  • Nakanishi K, Takeda Y, Tetsumoto S, et al. Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease–like phenotype in adiponectin-null mice: implications for therapy. Am J Respir Crit Care Med. 2011;183(9):1164–1175. doi:10.1164/rccm.201007-1091OC
  • Fan EK, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Respir Res. 2018;19(1):1–13. doi:10.1186/s12931-018-0756-5
  • Ha EH, Choi J-P, Kwon H-S, et al. Endothelial Sox17 promotes allergic airway inflammation. J Allergy Clin Immunol. 2019;144(2):561–573. e566. doi:10.1016/j.jaci.2019.02.034
  • Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells. Int J Biol Sci. 2019;15(7):1440. doi:10.7150/ijbs.30193
  • Xu F, Zhou F. Inhibition of microRNA-92a ameliorates lipopolysaccharide-induced endothelial barrier dysfunction by targeting ITGA5 through the PI3K/Akt signaling pathway in human pulmonary microvascular endothelial cells. Int Immunopharmacol. 2020;78:106060. doi:10.1016/j.intimp.2019.106060
  • Zhang L, Ge S, He W, Chen Q, Xu C, Zeng M. Ghrelin protects against lipopolysaccharide-induced acute respiratory distress syndrome through the PI3K/AKT pathway. J Biol Chem. 2021;297(3):101111. doi:10.1016/j.jbc.2021.101111
  • Yang J, Ruan F, Zheng Z. Ripasudil attenuates lipopolysaccharide (LPS)-mediated apoptosis and inflammation in pulmonary microvascular endothelial cells via ROCK2/eNOS signaling. Med Sci Monit. 2018;24:3212. doi:10.12659/MSM.910184
  • Nezic L, Amidzic L, Skrbic R, et al. Amelioration of endotoxin-induced acute lung injury and alveolar epithelial cells apoptosis by simvastatin is associated with up-regulation of survivin/NF-kB/p65 pathway. Int J Mol Sci. 2022;23(5). doi:10.3390/ijms23052596
  • Qiu Q, Yu X, Chen Q, He X. Sema3A inactivates the ERK/JNK signalling pathways to alleviate inflammation and oxidative stress in lipopolysaccharide-stimulated rat endothelial cells and lung tissues. Autoimmunity. 2023;56(1):2200908. doi:10.1080/08916934.2023.2200908
  • Pingali U, Sukumaran D, Nutalapati C. Effect of an aqueous extract of Terminalia chebula on endothelial dysfunction, systemic inflammation, and lipid profile in type 2 diabetes mellitus: a randomized double‐blind, placebo‐controlled clinical study. Phytoth Res. 2020;34(12):3226–3235. doi:10.1002/ptr.6771
  • Usharani P, Merugu PL, Nutalapati C, Cha -Y-Y, An H-J. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: a randomised, double blind, placebo controlled clinical study. BMC Complement Altern Med. 2019;19(1):1–8. doi:10.1186/s12906-018-2420-5
  • Naeini Z, Toupchian O, Vatannejad A, et al. Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-κB and PPAR-γ activity in PBMCs of patients with T2DM: a randomized, double-blind, clinical trial. Nutr Metab Cardiovasc Dis. 2020;30(3):441–447. doi:10.1016/j.numecd.2019.10.012
  • Pisaniello AD, Psaltis PJ, King PM, et al. Omega-3 fatty acids ameliorate vascular inflammation: a rationale for their atheroprotective effects. Atherosclerosis. 2021;324:27–37. doi:10.1016/j.atherosclerosis.2021.03.003
  • Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res. 2018;123(9):1091–1102. doi:10.1161/CIRCRESAHA.118.313565
  • Fan Y, Liu J, Miao J, et al. Anti-inflammatory activity of the Tongmai Yangxin pill in the treatment of coronary heart disease is associated with estrogen receptor and NF-κB signaling pathway. J Ethnopharmacol. 2021;276:114106. doi:10.1016/j.jep.2021.114106
  • Jafari T, Fallah AA, Reyhanian A, Sarmast E. Effects of pomegranate peel extract and vitamin E on the inflammatory status and endothelial function in hemodialysis patients: a randomized controlled clinical trial. Food Funct. 2020;11(9):7987–7993. doi:10.1039/D0FO01012J
  • Papathanasiou JV, Petrov I, Tsekoura D, et al. Does group-based high-intensity aerobic interval training improve the inflammatory status in patients with chronic heart failure? Eur J Phys Rehabil Med. 2022;58(2):242–250. doi:10.23736/S1973-9087.21.06894-5
  • Aquila G, Vieceli Dalla Sega F, Marracino L, et al. Ticagrelor Increases SIRT1 and HES1 mRNA levels in peripheral blood cells from patients with stable coronary artery disease and chronic obstructive pulmonary disease. Int J Mol Sci. 2020;21(5):1576. doi:10.3390/ijms21051576
  • Karimi A, Naeini F, Niazkar HR, et al. Nano-curcumin supplementation in critically ill patients with sepsis: a randomized clinical trial investigating the inflammatory biomarkers, oxidative stress indices, endothelial function, clinical outcomes and nutritional status. Food Funct. 2022;13:6596–6612. doi:10.1039/D1FO03746C
  • De cheng R, Guan Hua D, Juntian Z. High throughput screening for intercellular adhesion molecule-1 inhibitor. Yao Xue Xue Bao. 2003;38:405–408.
  • Opar A. Where now for new drugs for atherosclerosis? Nat Rev Drug Discov. 2007;6(5):334–335. doi:10.1038/nrd2326
  • Dhananjayan R, Koundinya K, Malati T, Kutala VK. Endothelial dysfunction in type 2 diabetes mellitus. Indian J Clin Biochem. 2016;31(4):372–379. doi:10.1007/s12291-015-0516-y