287
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review

, , , &
Pages 4503-4526 | Received 15 May 2023, Accepted 27 Sep 2023, Published online: 13 Oct 2023

References

  • Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subjects. 2013;1830(6):3670–3695. doi:10.1016/j.bbagen.2013.02.008
  • Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev Res. 2020;81:628–636. doi:10.1002/ddr.21667
  • Demir Y, Durmaz L, Taslimi P, et al. Antidiabetic properties of dietary phenolic compounds: inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnol Appl Biochem. 2019;66(5):781–786. doi:10.1002/bab.1781
  • Aslan HE, Demir Y, Özaslan MS, et al. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem Toxicol. 2019;42(6):634–640. doi:10.1080/01480545.2018.1463242
  • Çağlayan C, Taslimi P, Demir Y, et al. The effects of zingerone against vancomycin‐induced lung, liver, kidney and testis toxicity in rats: the behavior of some metabolic enzymes. J Biochem Mol Toxicol. 2019;33:e22381. doi:10.1002/jbt.22381
  • Mahmudov I, Demir Y, Sert Y, et al. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – a molecular docking study. Arab J Chem. 2022;15(3):103645. doi:10.1016/j.arabjc.2021.103645
  • Anil DA, Aydin BO, Demir Y, et al. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct. 2022;1257:132613. doi:10.1016/j.molstruc.2022.132613
  • Ceylan H, Demir Y, Beydemir S. Inhibitory effects of Usnic and Carnosic Acid on some metabolic enzymes: an in vitro study. Protein Pept Lett. 2019;26:364–370. doi:10.2174/0929866526666190301115122
  • Demir Y, Ceylan H, Türkeş C, et al. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn. 2022;40:12008–12021. doi:10.1080/07391102.2021.1967195
  • Persson PB, Persson AB. Age your garlic for longevity! Acta Physiol. 2012;205(1):1–2. doi:10.1111/j.1748-1716.2012.02424.x
  • Öztürk C, Bayrak S, Demir Y, et al. Some indazoles as alternative inhibitors for potato polyphenol oxidase. Biotechnol Appl Biochem. 2022;69(5):2249–2256. doi:10.1002/bab.2283
  • Özaslan MS, Sağlamtaş R, Demir Y, et al. Isolation of some phenolic compounds from plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem Biodivers. 2022;19(8). doi:10.1002/cbdv.202200280
  • Bae J. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res. 2012;35(9):1511–1523. doi:10.1007/s12272-012-0901-5
  • Türkeş C, Demir Y, Beydemir Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors. ChemistrySelect. 2022;7(48):e202204050. doi:10.1002/slct.202204050
  • Hollman P, Katan M. Absorption, metabolism of dietary flavonoids. Biomed&Pharmacother. 1997;51:305–310.
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956. doi:10.1016/0891-5849(95)02227-9
  • Middleton EJ, Drzewiecki G. Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem Pharmacol. 1984;33(21):3333–3338. doi:10.1016/0006-2952(84)90102-3
  • Mukaida N. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol. 2000;72(4):391–398.
  • Palabıyık E, Sulumer AN, Uguz H, et al. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit. 2023;36(3). doi:10.1002/jmr.3004
  • Bayrak S, Öztürk C, Demir Y, et al. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept Lett. 2020;27(3):187–192. doi:10.2174/0929866526666191002142301
  • Weaver BA, Bement W, Bement W. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–2681. doi:10.1091/mbc.E14-04-0916
  • Yang J, He Y, Li Y, et al. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther. 2020;216:107697. doi:10.1016/j.pharmthera.2020.107697
  • Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017;22(2):191. doi:10.3390/molecules22020191
  • Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of hypericum perforatum L. in vitro. J Agric Food Chem. 2004;52(16):5032–5039. doi:10.1021/jf049571r
  • Kim S, Um J-Y, Hong S-H, et al. Anti-Inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am J Chin Med. 2012;39:171–181. doi:10.1142/S0192415X11008737
  • Haas JS, Dischkaln Stolz E, Heemann Betti A, et al. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation. Planta Med. 2011;77(04):334–339. doi:10.1055/s-0030-1250386
  • Liu X, Zhu L, Tan J, et al. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from agrimonia pilosa ledeb. BMC Complement Altern Med. 2014;14(1):12. doi:10.1186/1472-6882-14-12
  • Huo Y, Yi B, Chen M, et al. Induction of Nur77 by hyperoside inhibits vascular smooth muscle cell proliferation and neointimal formation. Biochem Pharmacol. 2014;92(4):590–598. doi:10.1016/j.bcp.2014.09.021
  • Liu R, Xiong Q-J, Shu Q, et al. Hyperoside protects cortical neurons from oxygen–glucose deprivation–reperfusion induced injury via nitric oxide signal pathway. Brain Res. 2012;1469:164–173. doi:10.1016/j.brainres.2012.06.044
  • Wang H, Hou X, Li B, et al. Study on active components of cuscuta chinensis promoting neural stem cells proliferation: bioassay-guided fractionation. Molecules. 2021;26(21):6634. doi:10.3390/molecules26216634
  • Yang L, Chen Q, Wang F, et al. Antiosteoporotic compounds from seeds of Cuscuta chinensis. J Ethnopharmacol. 2011;135(2):553–560. doi:10.1016/j.jep.2011.03.056
  • Cui Y, Zhao Z, Liu Z, et al. Purification and identification of buckwheat hull flavonoids and its comparative evaluation on antioxidant and cytoprotective activity in vitro. Food Sci Nutr. 2020;8(7):3882–3892. doi:10.1002/fsn3.1683
  • Sun Y, Pan Z, Yang C, et al. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots. Molecules (Basel, Switzerland). 2019;24(24):4476. doi:10.3390/molecules24244476
  • Tocci N, Perenzoni D, Iamonico D, et al. Extracts from hypericum hircinum subsp. majus exert antifungal activity against a panel of sensitive and drug-resistant clinical strains. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00382
  • Wu P, Li F, Zhang J, et al. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity. BMC Complement Altern Med. 2017;17(1). doi:10.1186/s12906-017-1662-y
  • Lund JA, Brown PN, Shipley PR. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia. 2020;143:104537. doi:10.1016/j.fitote.2020.104537
  • Hafsa J, Hammi KM, Khedher MRB, et al. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed Pharmacother. 2016;84:1496–1503. doi:10.1016/j.biopha.2016.11.046
  • Mustapha N, Mokdad-Bzéouich I, Sassi A, et al. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities. Tumor Biol. 2016;37(6):7967–7980. doi:10.1007/s13277-015-4517-5
  • Zorzetto C, Sánchez-Mateo CC, Rabanal RM, et al. Phytochemical analysis and in vitro biological activity of three hypericum species from the canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia. 2015;100:95–109. doi:10.1016/j.fitote.2014.11.013
  • Shabbir M, Afsar T, Razak S, et al. Phytochemical analysis and Evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice. Lipids Health Dis. 2020;19(1). doi:10.1186/s12944-020-01231-9
  • Cardoso ML, Bersani Amado C, Outuki,P, et al. A high performance liquid chromatography with ultraviolet method for Eschweilera nana leaves and their anti-inflammatory and antioxidant activities. Pharmacogn Mag. 2015;11(43):619–626. doi:10.4103/0973-1296.160464
  • Mansur S, Abdulla R, Ayupbec A, et al. Chemical fingerprint analysis and quantitative analysis of Rosa rugosa by UPLC-DAD. Molecules. 2016;21(12):1754. doi:10.3390/molecules21121754
  • Xie Q, Ding L, Wei Y, et al. Determination of major components and fingerprint analysis of flaveria bidentis (L.) Kuntze. J Chromatogr Sci. 2014;52(3):252–257. doi:10.1093/chromsci/bmt020
  • Shen J, Yang K, Jiang C, et al. Development and application of a rapid HPLC method for simultaneous determination of hyperoside, isoquercitrin and eleutheroside E in Apocynum venetum L. and Eleutherococcus senticosus. BMC Chem. 2020;14(1). doi:10.1186/s13065-020-00687-1
  • Li L. Simulation determination of eight active components in Polygonum aviculare L. by HPLC. J Taishan Med Coll. 2021;42:61–65.
  • Wang H. Determination of 5 flavonoids in Hypericum ascyron L. by HPLC. Cent South Pharm. 2021;19:1911–1914.
  • Ozbilgin S, Acıkara ÖB, Akkol EK, et al. In vivo wound-healing activity of Euphorbia characias subsp. wulfenii: isolation and quantification of quercetin glycosides as bioactive compounds. J Ethnopharmacol. 2018;224:400–408. doi:10.1016/j.jep.2018.06.015
  • Dresler S, Kováčik J, Strzemski M, et al. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J Pharm Biomed Anal. 2018;155:82–90. doi:10.1016/j.jpba.2018.03.048
  • Zeliou K, Kontaxis NI, Margianni E, et al. Optimized and Validated HPLC Analysis of St. John’s wort extract and final products by simultaneous determination of major ingredients. J Chromatogr Sci. 2017;55(8):805–812. doi:10.1093/chromsci/bmx040
  • Jia Q, Huang X, Yao G, et al. Pharmacokinetic study of thirteen ingredients after the oral administration of flos chrysanthemi extract in rats by UPLC-MS/MS. Biomed Res Int. 2020;2020:1–10. doi:10.1155/2020/8420409
  • Males Z, Saric D, Bojic M. Quantitative determination of flavonoids and chlorogenic acid in the leaves of arbutus unedo L. using thin layer chromatography. J Anal Methods Chem. 2013;2013:385473. doi:10.1155/2013/385473
  • Liu J, Zhang Z, Yang L, et al. Molecular structure and spectral characteristics of hyperoside and analysis of its molecular imprinting adsorption properties based on density functional theory. J Mol Graph Model. 2019;88:228–236. doi:10.1016/j.jmgm.2019.01.005
  • Cheng Y. Inhibition effect of nine flavonoids on human cancer cells and their structure-activity relationship analysis. Northwest Pharm J. 2014;29:187–190.
  • Chen J, Zhu Z-Q, Hu T-X, et al. Structure-activity relationship of natural flavonoids in hydroxyl radical scavenging effects. Acta Pharmacol Sin. 2002;23:667–672.
  • Plochmann K, Korte G, Koutsilieri E, et al. Structure–activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch Biochem Biophys. 2007;460(1):1–9. doi:10.1016/j.abb.2007.02.003
  • Zhang Y, Wu X, Ding X. Studies on the relationship between the structure of flavonoids and their scavenging capacity on active oxygen radicals by means of chemiluminescence. Nat Prod Res Dev. 1998;10:26–33.
  • Zhao J. Study of 6 flavonoids compounds for the scavenging superoxide anion free radical ability and the structure-activity relationships. China Med Herald. 2014;11:7–10, 14.
  • Cai YZ, Sun M, Xing J, et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006;78(25):2872–2888. doi:10.1016/j.lfs.2005.11.004
  • Feng Y, Qin G, Chang S, et al. Antitumor effect of hyperoside loaded in charge reversed and mitochondria-targeted liposomes. Int J Nanomedicine. 2021;16:3073–3089. doi:10.2147/IJN.S297716
  • Gao Y, Fang L, Wang X, et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using saccharomyces cerevisiae as a model. Molecules. 2019;24(4):788. doi:10.3390/molecules24040788
  • Biagi M, Noto D, Corsini M, et al. Antioxidant effect of the castanea sativa mill. Leaf extract on oxidative stress induced upon human spermatozoa. Oxid Med Cell Longev. 2019;2019:8926075. doi:10.1155/2019/8926075
  • Liu Z, Tao X, Zhang C, et al. Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomed Pharmacother. 2005;59(9):481–490. doi:10.1016/j.biopha.2005.06.009
  • Li HB, Yi X, Gao JM, et al. The mechanism of hyperoside protection of ECV-304 cells against tert-butyl hydroperoxide-induced injury. Pharmacology. 2008;82(2):105–113. doi:10.1159/000139146
  • Ohguchi K, Nakajima C, Oyama M, et al. Inhibitory effects of flavonoid glycosides isolated from the peel of Japanese persimmon (Diospyros kaki ‘Fuyu’) on melanin biosynthesis. Biol Pharm Bull. 2010;33:122–124. doi:10.1248/bpb.33.122
  • Kim YJ. Hyperin and quercetin modulate oxidative stress-induced melanogenesis. Biol Pharm Bull. 2012;35(11):2023–2027. doi:10.1248/bpb.b12-00592
  • Qi X, Li B, Wu WL, et al. Protective effect of hyperoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Artif Cells Nanomed Biotechnol. 2020;48:377–383. doi:10.1080/21691401.2019.1709851
  • Kwon SH, Lee SR, Park YJ, et al. Suppression of 6-hydroxydopamine-induced oxidative stress by hyperoside via activation of Nrf2/HO-1 signaling in dopaminergic neurons. Int J Mol Sci. 2019. doi:10.3390/ijms20235832
  • Xing H, Liu Y, Chen J-H, et al. Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap1-Nrf2-ARE signaling pathway. Biochem Biophys Res Commun. 2011;410:759–765. doi:10.1016/j.bbrc.2011.06.046
  • Kalegari M, Gemin CAB, Araújo-Silva G, et al. Chemical composition, antioxidant activity and hepatoprotective potential of Rourea induta Planch. (Connaraceae) against CCl4-induced liver injury in female rats. Nutrition. 2014;30(6):713–718. doi:10.1016/j.nut.2013.11.004
  • Piao MJ, Kang KA, Zhang R, et al. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim Biophys Acta Gen Subjects. 2008;1780(12):1448–1457. doi:10.1016/j.bbagen.2008.07.012
  • He S, Yin X, Wu F, et al. Hyperoside protects cardiomyocytes against hypoxiainduced injury via upregulation of microRNA138. Mol Med Rep. 2021;23. doi:10.3892/mmr.2021.11925
  • Lee S, Jung SH, Lee YS, et al. Antiinflammatory activity of hyperin from Acanthopanax chiisanensis roots. Arch Pharm Res. 2004;27:628–632. doi:10.1007/BF02980162
  • Wei A, Xiao H, Xu G, et al. Hyperoside protects human umbilical vein endothelial cells against anticardiolipin antibody-induced injury by activating autophagy. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00762
  • Li Z, Liu J-C, Hu J, et al. Protective effects of hyperoside against human umbilical vein endothelial cell damage induced by hydrogen peroxide. J Ethnopharmacol. 2012;139(2):388–394. doi:10.1016/j.jep.2011.11.020
  • Ku S, Kwak S, Kwon O-J, et al. Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation. 2014;37(5):1389–1400. doi:10.1007/s10753-014-9863-8
  • Ku S, Zhou W, Lee W, et al. Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation. 2015;38(2):784–799. doi:10.1007/s10753-014-9989-8
  • Zhang Z, Zhang D, Du B, et al. Hyperoside inhibits the effects induced by oxidized low-density lipoprotein in vascular smooth muscle cells via oxLDL-LOX-1-ERK pathway. Mol Cell Biochem. 2017;433(1–2):169–176. doi:10.1007/s11010-017-3025-x
  • Fan Y, Chen Z-W, Guo Y, et al. Cellular mechanisms underlying Hyperin-induced relaxation of rat basilar artery. Fitoterapia. 2011;82(4):626–631. doi:10.1016/j.fitote.2011.01.023
  • Li Z, Hu J, Li Y-L, et al. The effect of hyperoside on the functional recovery of the ischemic/reperfused isolated rat heart: potential involvement of the extracellular signal-regulated kinase 1/2 signaling pathway. Free Radic Biol Med. 2013;57:132–140. doi:10.1016/j.freeradbiomed.2012.12.023
  • Yang Y, Li J, Rao T, et al. The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. J Ethnopharmacol. 2021;276:114187. doi:10.1016/j.jep.2021.114187
  • Wang X, Liu Y, Xiao L, et al. Hyperoside protects against pressure overload-induced cardiac remodeling via the AKT signaling pathway. Cell Physiol Biochem. 2018;51(2):827–841. doi:10.1159/000495368
  • Guo X, Zhang Y, Lu C, et al. Protective effect of hyperoside on heart failure rats via attenuating myocardial apoptosis and inducing autophagy. Biosci Biotechnol Biochem. 2020;84(4):714–724. doi:10.1080/09168451.2019.1685369
  • Huang J, Zhou L, Chen J, et al. Hyperoside attenuate inflammation in HT22 cells via upregulating SIRT1 to activities Wnt/β-catenin and sonic hedgehog pathways. Neural Plast. 2021;2021:1–10. doi:10.1155/2021/8706400
  • Lee S, Park HS, Notsu Y, et al. Effects of hyperin, isoquercitrin and quercetin on lipopolysaccharide-induced nitrite production in rat peritoneal macrophages. Phytother Res. 2008;22:1552–1556. doi:10.1002/ptr.2529
  • Sun K, Luo J, Jing X, et al. Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine. 2021;80:153387. doi:10.1016/j.phymed.2020.153387
  • Zhou J, Zhang S, Sun X, et al. Hyperoside Protects HK-2 cells against high glucose-induced apoptosis and inflammation via the miR-499a-5p/NRIP1 pathway. Pathol Oncol Res. 2021;27. doi:10.3389/pore.2021.629829
  • Xu T, Wu X, Zhou Z, et al. Hyperoside ameliorates periodontitis in rats by promoting osteogenic differentiation of BMSCs via activation of the NF‐κB pathway. FEBS Open Bio. 2020;10:1843–1855. doi:10.1002/2211-5463.12937
  • Prenner L, Sieben A, Zeller K, et al. Reduction of high-affinity β 2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 Glioblastoma cells measured by fluorescence correlation spectroscopy. Biochemistry. 2007;46:5106–5113. doi:10.1021/bi6025819
  • Jakobsa D, Hage-Hülsmann A, Prenner L, et al. Downregulation of b1-adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John’s wort. J Pharm Pharmacol. 2013;65:907–915. doi:10.1111/jphp.12050
  • Zheng M, Liu C, Pan F, et al. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine. 2012;19:145–149. doi:10.1016/j.phymed.2011.06.029
  • Orzelska-Górka J, Szewczyk K, Gawrońska-Grzywacz M, et al. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochem Int. 2019;128:206–214. doi:10.1016/j.neuint.2019.05.006
  • Zhu ZM, Fan YJ, Pan Y, et al. Studies on the antidepressant-like effect of hyperoside on the possible mechanism of 5-HT system. J Changchun Normal Univ. 2018;37:83–87.
  • Yan Z, Chen-chen Z. Effect of hyperin on depressive behavior of rats induced by chronic unpredicted mild stress. Chin J New Drugs Clin Rem. 2017;36:150–156.
  • Li X, Wei CE, Zhao MB, et al. Experimental study of the total flavonoid in Hypericum perforatum on depression. China J Chin Mater Med. 2005;30:1184–1188.
  • Zeng K, Wang X-M, Ko H, et al. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. Eur J Pharmacol. 2011;672(1–3):45–55. doi:10.1016/j.ejphar.2011.09.177
  • Zeng K, Wang X, Fu H, et al. Protective effects and mechanism of hyperin on CoCl2-induced PC12 cells. China J Chin Mater Med. 2011;36:2409–2412.
  • Nam Y, Lee D. Ameliorating effects of constituents from cortex acanthopanacis radicis on memory impairment in mice induced by scopolamine. J Trad Chin Med. 2014;34(1):57–62. doi:10.1016/S0254-6272(14)60055-8
  • Han J. Mechanism of hyperoside- induced dilatation in middle cerebral arteries of rats subjected to cerebral ischemia reperfusion. Chin Pharm J. 2015;50:595–601.
  • Shanshan G, Shuo C, Zhiwu C. The H2S mechanism of Hyp against cerebral ischemia reperfusion injury in mice. Acta Univ Med Anhui. 2016;51:1292–1296.
  • Han J, Xuan JL, Hu HR, et al. Effects and mechanisms of hyperoside on vascular endothelium function in middle cerebral arteries of rats ex vivo. China J Chin Mater Med. 2014;39:4849–4855.
  • Jin-song L, Jian-hong C, Min-jie M. Hyperoside attenuated hypoxia-induced memory impairment by antioxidative activity. J Reg Anat Oper Surg. 2015;24:181–184.
  • Qiu J, Zhang T, Zhu X, et al. Hyperoside induces breast cancer cells apoptosis via ROS-Mediated NF-κB signaling pathway. Int J Mol Sci. 2020;21:131. doi:10.3390/ijms21010131
  • Sun T, Liu Y, Li M, et al. Administration with hyperoside sensitizes breast cancer cells to paclitaxel by blocking the TLR4 signaling. Mol Cell Probes. 2020;53:101602. doi:10.1016/j.mcp.2020.101602
  • Lü P. Inhibitory effects of hyperoside on lung cancer by inducing apoptosis and suppressing inflammatory response via caspase-3 and NF-κB signaling pathway. Biomed Pharmacother. 2016;82:216–225. doi:10.1016/j.biopha.2016.05.006
  • Chen D, Wu Y-X, Qiu Y-B, et al. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 2020;67:153138. doi:10.1016/j.phymed.2019.153138
  • Yang Y, Tantai J, Sun Y, et al. Effect of hyperoside on the apoptosis of A549 human non-small cell lung cancer cells and the underlying mechanism. Mol Med Rep. 2017;16(5):6483–6488. doi:10.3892/mmr.2017.7453
  • Jia X, Zhang Q, Xu L, et al. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol Res. 2021;54(1). doi:10.1186/s40659-021-00330-w
  • Li J, Liao XH, Xiang Y, et al. Hyperoside and let-7a-5p synergistically inhibits lung cancer cell proliferation via inducing G1/S phase arrest. Gene. 2018;679:232–240. doi:10.1016/j.gene.2018.09.011
  • Hu Z, Zhao P, Xu H. Hyperoside exhibits anticancer activity in nonsmall cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol Rep. 2020;43:617–624. doi:10.3892/or.2019.7440
  • Fu T, Wang L, Jin XN, et al. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol Sin. 2016;37:505–518. doi:10.1038/aps.2015.148
  • Liu Y, Liu G-H, Mei JJ, et al. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed Pharmacother. 2016;83:381–391. doi:10.1016/j.biopha.2016.06.035
  • Yang Y, Sun Y, Guo X, et al. Hyperoside inhibited the migration and invasion of lung cancer cells through the upregulation of PI3K/AKT and p38 MAPK pathways. Int J Clin Exp Pathol. 2017;10:9382–9390.
  • Li Y, Wang Y, Li L, et al. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumor Biol. 2016;37(6):7345–7355. doi:10.1007/s13277-015-4552-2
  • Hou J, Qian J, Li Z, et al. Bioactive compounds from abelmoschus manihot L. alleviate the progression of multiple myeloma in mouse model and improve bone marrow microenvironment. OncoTargets and Therapy. 2020;13:959–973. doi:10.2147/OTT.S235944
  • Zhang N, Ying M-D, Wu Y-P, et al. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One. 2014;9(7):e98973. doi:10.1371/journal.pone.0098973
  • Guo W, Yu H, Zhang L, et al. Effect of hyperoside on cervical cancer cells and transcriptome analysis of differentially expressed genes. Cancer Cell Int. 2019;19(1). doi:10.1186/s12935-019-0953-4
  • Li F, Yu F-X, Yao S-T, et al. Hyperin extracted from Manchurian rhododendron leaf induces apoptosis in human endometrial cancer cells through a mitochondrial pathway. Asian Pac J Cancer Prev. 2012;13(8):3653–3656. doi:10.7314/APJCP.2012.13.8.3653
  • Zhu X, Ji M, Han Y, et al. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int J Oncol. 2017;50(3):835–846. doi:10.3892/ijo.2017.3873
  • Jiang S, Xiong HS, Wu HK, et al. Regulatory effect of hyperoside on proliferation and apoptosis of hepatic carcinoma cell HepG2 via mitochondrial P53 /Caspase signaling pathway. Chin J Immunol. 2018;34:1832–1836.
  • Wei S, Sun Y, Wang L, et al. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann Transl Med. 2021;9(15):1233. doi:10.21037/atm-21-2980
  • Kong Y, Sun W, Wu P. Hyperoside exerts potent anticancer activity in skin cancer. Front Biosci. 2020;25(3):463–479. doi:10.2741/4814
  • Yang F, Liu M, Li W, et al. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA-21. Mol Med Rep. 2015;11(2):1085–1092. doi:10.3892/mmr.2014.2813
  • Li W, Liu M, Xu Y-F, et al. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol Rep. 2014;31(1):117–124. doi:10.3892/or.2013.2811
  • Zhang Y, Dong H, Zhang J, et al. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis. Mol Med Rep. 2017;16(2):1125–1132. doi:10.3892/mmr.2017.6710
  • Guon TE, Chung HS. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncol Lett. 2016;11(4):2463–2470. doi:10.3892/ol.2016.4247
  • Liu Z, Liu G, Liu X, et al. The effects of hyperoside on apoptosis and the expression of Fas/FasL and survivin in SW579 human thyroid squamous cell carcinoma cell line. Oncol Lett. 2017;14(2):2310–2314. doi:10.3892/ol.2017.6453
  • Wu L, Yang X-B, Huang ZM, et al. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik1. Acta Pharmacol Sin. 2007;28(3):404–409. doi:10.1111/j.1745-7254.2007.00510.x
  • Li J, Huang H, Zhou W, et al. Anti-hepatitis B virus activities of Geranium carolinianum L. extracts and identification of the active components. Biol Pharm Bull. 2008;31(4):743–747. doi:10.1248/bpb.31.743
  • Rehmana S, Ashfaq UA, Ijaz B, et al. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb Pathog. 2018;121:198–209. doi:10.1016/j.micpath.2018.05.023
  • Jiang Z, Wang J, Liu C, et al. Hyperoside alleviated N-acetyl-para-amino-phenol-induced acute hepatic injury via Nrf2 activation. Int J Clin Exp Pathol. 2019;12(1):64–76.
  • Cai Y, Li B, Peng D, et al. Crm1-dependent nuclear export of bach1 is involved in the protective effect of hyperoside on oxidative damage in hepatocytes and CCl4-induced acute liver injury. J Inflamm Res. 2021;14:551–565. doi:10.2147/JIR.S279249
  • Choi J, Kim D-W, Yun N, et al. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J Nat Prod. 2011;74(5):1055–1060. doi:10.1021/np200001x
  • Xing H, Fu R, Cheng C, et al. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.01065
  • Sun B, Zhang R, Liang Z, et al. Hyperoside attenuates non-alcoholic fatty liver disease through targeting Nr4A1 in macrophages. Int Immunopharmacol. 2021;94:107438. doi:10.1016/j.intimp.2021.107438
  • Guo X, Zhu C, Liu X, et al. Hyperoside protects against heart failure-induced liver fibrosis in rats. Acta Histochem. 2019;121(7):804–811. doi:10.1016/j.acthis.2019.07.005
  • Han N, Go J-H, Kim H-M, et al. Hyperoside regulates the level of thymic stromal lymphopoietin through intracellular calcium signalling. Phytother Res. 2014;28(7):1077–1081. doi:10.1002/ptr.5099
  • Liu J, Wang Y, Tu Z-C, et al. Bovine β-lactoglobulin covalent modification by flavonoids: effect on the allergenicity and human intestinal microbiota. J Agric Food Chem. 2021;69(24):6820–6828. doi:10.1021/acs.jafc.1c02482
  • Ku S, Kim TH, Lee S, et al. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem Toxicol. 2013;53:197–204. doi:10.1016/j.fct.2012.11.040
  • Song M, Hong M, Lee MY, et al. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6. Food Chem Toxicol. 2013;59:549–553. doi:10.1016/j.fct.2013.06.055
  • Zhu W, Xu Y-F, Feng Y, et al. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis. 2014;42(6):519–526. doi:10.1007/s00240-014-0695-7
  • Sohn E, Kim J, Kim C-S, et al. Osteomeles schwerinae extract prevents diabetes-induced renal injury in spontaneously diabetic torii rats. Evid Based Complement Alternat Med. 2018;2018:1–8. doi:10.1155/2018/6824215
  • Liu B, Tu Y, He W, et al. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging (Albany NY). 2018;10(12):4197–4212. doi:10.18632/aging.101723
  • Lee D, Shrestha S, Seo WD, et al. Structural and quantitative analysis of antioxidant and low-density lipoprotein-antioxidant flavonoids from the grains of sugary rice. J Med Food. 2012;15(4):399–405. doi:10.1089/jmf.2011.1905
  • Liaudanskas M, Viškelis P, Raudonis R, et al. Phenolic composition and antioxidant activity of Malus domestica leaves. ScientificWorldJournal. 2014;2014:10. doi:10.1155/2014/306217
  • Wu Y, Zheng L-J, Wu J-G, et al. Antioxidant activities of extract and fractions from receptaculum nelumbinis and related flavonol glycosides. Int J Mol Sci. 2012;13(6):7163–7173. doi:10.3390/ijms13067163
  • Yao X, Zhang D-Y, Luo M, et al. Negative pressure cavitation-microwave assisted preparation of extract of Pyrola incarnata Fisch. rich in hyperin, 2′-O-galloylhyperin and chimaphilin and evaluation of its antioxidant activity. Food Chem. 2015;169:270–276. doi:10.1016/j.foodchem.2014.07.115
  • Azzouzi HE, Leptidis S, Doevendans PA, et al. HypoxamiRs: regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol Metab. 2015;26(9):502–508. doi:10.1016/j.tem.2015.06.008
  • Bećarević M. TNF-alpha and annexin A2: inflammation in thrombotic primary antiphospholipid syndrome. Rheumatol Int. 2016;36(12):1649–1656. doi:10.1007/s00296-016-3569-1
  • Li Q, Xie J, Wang B, et al. Overexpression of microRNA-99a attenuates cardiac hypertrophy. PLoS One. 2016;11:e148480. doi:10.1371/journal.pone.0148480
  • Boukes GJ, van de Venter M. The apoptotic and autophagic properties of two natural occurring prodrugs, hyperoside and hypoxoside, against pancreatic cancer cell lines. Biomed Pharmacother. 2016;83:617–626. doi:10.1016/j.biopha.2016.07.029
  • Verma N, Singh AP, Gupta A, et al. Antidiarrheal potential of standardized extract of rhododendron arboreum smith flowers in experimental animals. India J Pharmacol. 2011;43:689–693.
  • Li S, Zhang Z, Cain A, et al. Antifungal activity of camptothecin, trifolin, and hyperoside isolated from camptotheca acuminata. J Agric Food Chem. 2005;53(1):32–37. doi:10.1021/jf0484780
  • Kalegari M, Cerutti ML, Macedo-Júnior SJ, et al. Chemical composition and antinociceptive effect of aqueous extract from Rourea induta Planch. leaves in acute and chronic pain models. J Ethnopharmacol. 2014;153(3):801–809. doi:10.1016/j.jep.2014.03.045
  • Hu J, Wang Z, Guo -Y-Y, et al. A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain. Mol Pain. 2009;5:71. doi:10.1186/1744-8069-5-71
  • Shi N. Effects of hyperin on mice with acute inflammatory pain. Drug Eval Res. 2016;39:768–771.
  • Wu C, Chai J, Zhang W. Study on the pharmacokinetics of hyperoside in rats. J Liaoning Univ TCM. 2016;18:23–26.
  • Guo AI, Huang ZM, Liu CX, et al. Pharmacokinetics study of hyperoside in rats. Chin J Exp Trad Med Formulae. 2013;19:157–161.
  • Tan A, Lin P, Zhang F. Determination of hyperoside in rat plasma after intravenous administration by UPLC-MS. J Chin Pharm Sci. 2013;22:516–520. doi:10.5246/jcps.2013.06.075
  • Ai G, Huang ZM, Wang DW, Zhang HD. Toxicity of hyperoside after long-term oral administration in Wistar rats. Chin J New Drugs. 2012;21:2811–6, 2828.
  • Ai G, Wang D, Huang Z, Zhang H. Long-term toxicity of hyperoside in Beagle dogs. Chin J New Drugs. 2015;24:1641–1647.
  • Ai G, Huang Z, Wang D, et al. Study on toxicity of hyperoside in rat embryo-fetal development. China J Chin Mater Med. 2012;37(16):2452–2455.
  • Ren X. Simulation determination of hyperoside and hypericin in hypericum perforatum L. and Related drugs by HPLC. Trad Chin Drug Res Clin Pharmacol. 2019;30:1374–1378.
  • Wu G, Yan S, Yan L. Determination of hyperoside, isoquercitrin and quercitrin in rose petal by HPLC. Mod Chin Med. 2020;22:1607–1610.
  • Zhang S. Determination of chlorogenic acid, hesperidin, hyperin and benzoic acid in jianer qingjie solution by HPLC. China Pharmacist. 2020;23:1429–1431.
  • Jia Y. Qualitative and quantitative study of Chaijin Jieyu granules. Cent South Pharm. 2018;16:1604–1608.
  • Zhu X. Determination of hyperoside in the extract of senecionis scandens herba and qianbai biyan capsule by HPLC and its pharmacokinetics in rats. Shandong Chem Indus. 2019;48:71–74.