187
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of Shared Immune Cells and Immune-Related Co-Disease Genes in Chronic Heart Failure and Systemic Lupus Erythematosus Based on Transcriptome Sequencing

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 2689-2705 | Received 24 May 2023, Accepted 22 Jun 2023, Published online: 30 Jun 2023

References

  • Baman JR, Ahmad FS. Heart failure. JAMA. 2020;324(10):1015. doi:10.1001/jama.2020.13310
  • Mascolo A, Di Mauro G, Cappetta D, et al. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res. 2022;175:106035. doi:10.1016/j.phrs.2021.106035
  • Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res. 2021;128(10):1421–1434. doi:10.1161/CIRCRESAHA.121.318172
  • Pan L, Lu MP, Wang JH, et al. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16(1):19–30. doi:10.1007/s12519-019-00229-3
  • Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–532. doi:10.1038/s41584-021-00668-1
  • Owen KA, Grammer AC, Lipsky PE. Deconvoluting the heterogeneity of SLE: the contribution of ancestry. J Allergy Clin Immunol. 2022;149(1):12–23. doi:10.1016/j.jaci.2021.11.005
  • Tenbrock K, Rauen T. T cell dysregulation in SLE. Clin Immunol. 2022;239:109031. doi:10.1016/j.clim.2022.109031
  • Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol. 2022;18(5):286–300. doi:10.1038/s41584-022-00770-y
  • Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol. 2022;44(3):309–324. doi:10.1007/s00281-022-00922-y
  • Yafasova A, Fosbøl EL, Schou M, et al. Long-term cardiovascular outcomes in systemic lupus erythematosus. J Am Coll Cardiol. 2021;77(14):1717–1727. doi:10.1016/j.jacc.2021.02.029
  • Yao M, Zhang C, Gao C, et al. Exploration of the shared gene signatures and molecular mechanisms between systemic lupus erythematosus and pulmonary arterial hypertension: evidence from transcriptome data. Front Immunol. 2021;12:658341. doi:10.3389/fimmu.2021.658341
  • Zhang T, Feng H, Zou X, et al. Integrated bioinformatics to identify potential key biomarkers for COVID-19-related chronic urticaria. Front Immunol. 2022;13:1054445. doi:10.3389/fimmu.2022.1054445
  • Li T, Qu J, Xu C, et al. Exploring the common gene signatures and pathogeneses of obesity with Alzheimer’s disease via transcriptome data. Front Endocrinol. 2022;13:1072955. doi:10.3389/fendo.2022.1072955
  • Castiglione V, Aimo A, Vergaro G, et al. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 2022;27(2):625–643. doi:10.1007/s10741-021-10105-w
  • Zhao X, Zhang L, Wang J, et al. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis. J Transl Med. 2021;19(1):35. doi:10.1186/s12967-020-02698-x
  • Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145(18):e895–e1032. doi:10.1161/CIR.0000000000001063
  • Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151–1159. doi:10.1136/annrheumdis-2018-214819
  • Sharma M, Bhatt LK. Emerging therapeutic targets for heart failure. Curr Cardiol Rep. 2022;24(11):1737–1754. doi:10.1007/s11886-022-01789-z
  • Crea F. Acute and chronic heart failure: exciting therapeutic perspectives. Eur Heart J. 2023;44(1):1–4. doi:10.1093/eurheartj/ehac767
  • Barber MRW, Falasinnu T, Ramsey-Goldman R, et al. The global epidemiology of SLE: narrowing the knowledge gaps. Rheumatology. 2023;62(Supplement_1):i4–i9. doi:10.1093/rheumatology/keac610
  • Chang JC, Xiao R, Knight AM, et al. A population-based study of risk factors for heart failure in pediatric and adult-onset systemic lupus erythematosus. Semin Arthritis Rheum. 2020;50(4):527–533. doi:10.1016/j.semarthrit.2020.03.019
  • Lu Y, Xia N, Cheng X. Regulatory T cells in chronic heart failure. Front Immunol. 2021;12:732794. doi:10.3389/fimmu.2021.732794
  • Li A, Guo F, Pan Q, et al. Mesenchymal stem cell therapy: hope for patients with systemic lupus erythematosus. Front Immunol. 2021;12:728190. doi:10.3389/fimmu.2021.728190
  • Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys. 2019;670:4–14. doi:10.1016/j.abb.2019.02.008
  • Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020;130:110542. doi:10.1016/j.biopha.2020.110542
  • Pellegrini C, Martelli A, Antonioli L, et al. NLRP3 inflammasome in cardiovascular diseases: pathophysiological and pharmacological implications. Med Res Rev. 2021;41(4):1890–1926. doi:10.1002/med.21781
  • Wang Y, Li Y, Zhang W, et al. NLRP3 inflammasome: a novel insight into heart failure. J Cardiovasc Transl Res. 2023;16(1):166–176. doi:10.1007/s12265-022-10286-1
  • Oliveira CB, Lima CAD, Vajgel G, et al. The role of NLRP3 inflammasome in lupus nephritis. Int J Mol Sci. 2021;22(22):12476. doi:10.3390/ijms222212476
  • Guo C, Fu R, Zhou M, et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun. 2019;103:102286. doi:10.1016/j.jaut.2019.05.014
  • Majumder S, McGeachy MJ. IL-17 in the pathogenesis of disease: good intentions gone awry. Annu Rev Immunol. 2021;39:537–556. doi:10.1146/annurev-immunol-101819-092536
  • Xue GL, Li DS, Wang ZY, et al. Interleukin-17 upregulation participates in the pathogenesis of heart failure in mice via NF-κB-dependent suppression of SERCA2a and Cav1.2 expression. Acta Pharmacol Sin. 2021;42(11):1780–1789. doi:10.1038/s41401-020-00580-6
  • Yang Y, Yan C, Yu L, et al. The star target in SLE: IL-17. Inflamm Res. 2023;72(2):313–328. doi:10.1007/s00011-022-01674-z
  • Long X, Luo C, Zhu Z. Role of CNSs conserved distal cis-regulatory elements in CD4 + T cell development and differentiation. Front Immunol. 2022;13:919550. doi:10.3389/fimmu.2022.919550
  • Xydonas S, Parissis J, Lioni L, et al. Immunosenescence in patients with chronic systolic heart failure. J Cardiovasc Med. 2016;17(8):624–630. doi:10.2459/JCM.0000000000000372
  • Yuan S, Zeng Y, Li J, et al. Phenotypical changes and clinical significance of CD4 + /CD8 + T cells in SLE. Lupus Sci Med. 2022;9(1):e000660. doi:10.1136/lupus-2022-000660
  • Chen Z, Yan W, Mao Y, et al. Effect of aerobic exercise on treg and Th17 of rats with ischemic cardiomyopathy. J Cardiovasc Transl Res. 2018;11(3):230–235. doi:10.1007/s12265-018-9794-0
  • Lu M, Qin X, Yao J, et al. Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiol. 2020;230(3):e13537. doi:10.1111/apha.13537
  • Shan J, Jin H, Xu Y. T cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front Immunol. 2020;11:1027. doi:10.3389/fimmu.2020.01027
  • Narasimhan PB, Marcovecchio P, Hamers AAJ, et al. Nonclassical monocytes in health and disease. Annu Rev Immunol. 2019;37:439–456. doi:10.1146/annurev-immunol-042617-053119
  • Dounousi E, Duni A, Naka KK, et al. The innate immune system and cardiovascular disease in ESKD: monocytes and natural killer cells. Curr Vasc Pharmacol. 2021;19(1):63–76. doi:10.2174/18756212MTA3yNzEe1
  • Rhee AJ, Lavine KJ. New approaches to target inflammation in heart failure: harnessing insights from studies of immune cell diversity. Annu Rev Physiol. 2020;82:1–20. doi:10.1146/annurev-physiol-021119-034412
  • Liu Y, Luo S, Zhan Y, et al. Increased expression of PPAR-γ modulates monocytes into a M2-like phenotype in SLE patients: an implicative protective mechanism and potential therapeutic strategy of systemic lupus erythematosus. Front Immunol. 2020;11:579372. doi:10.3389/fimmu.2020.579372
  • López P, Rodríguez-Carrio J, Martínez-Zapico A, et al. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology. 2020;59(7):1795. doi:10.1093/rheumatology/keaa225
  • Brandum EP, Jørgensen AS, Rosenkilde MM, et al. Dendritic cells and CCR7 expression: an important factor for autoimmune diseases, chronic inflammation, and cancer. Int J Mol Sci. 2021;22(15):8340. doi:10.3390/ijms22158340
  • Yndestad A, Finsen AV, Ueland T, et al. The homeostatic chemokine CCL21 predicts mortality and may play a pathogenic role in heart failure. PLoS One. 2012;7(3):e33038. doi:10.1371/journal.pone.0033038
  • Van Raemdonck K, Umar S, Shahrara S. The pathogenic importance of CCL21 and CCR7 in rheumatoid arthritis. Cytokine Growth Factor Rev. 2020;55:86–93. doi:10.1016/j.cytogfr.2020.05.007
  • You Y, Zhao X, Wu Y, et al. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278.2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front Immunol. 2021;12:615859. doi:10.3389/fimmu.2021.615859
  • Wu L, Xu Y, Zhao H, et al. RNase T2 in inflammation and cancer: immunological and biological views. Front Immunol. 2020;11:1554. doi:10.3389/fimmu.2020.01554
  • Zheng PF, Liu F, Zheng ZF, et al. Identification MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 as the potential immune-related key genes involved in ischaemic cardiomyopathy by random forest and nomogram. Aging. 2023;15(5):1475–1495. doi:10.18632/aging.204547
  • Zhu Y, Tang X, Xu Y, et al. RNASE2 mediates age-associated B cell expansion through monocyte derived IL-10 in patients with systemic lupus erythematosus. Front Immunol. 2022;13:752189. doi:10.3389/fimmu.2022.752189
  • Vernet R, Matran R, Zerimech F, et al. Identification of novel genes influencing eosinophil-specific protein levels in asthma families. J Allergy Clin Immunol. 2022;150(5):1168–1177. doi:10.1016/j.jaci.2022.05.017
  • Kim J, Kim S, Lee YI, et al. Eosinophil cationic protein is a potential surrogate marker of allergic contact dermatitis: a single-center, retrospective study of 216 patients. J Am Acad Dermatol. 2020;83(6):1819–1821. doi:10.1016/j.jaad.2020.05.070
  • Karin N, Razon H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine. 2018;109:24–28.
  • Ngwenyama N, Salvador AM, Velázquez F, et al. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight. 2019;4(7). doi:10.1172/jci.insight.125527
  • Altara R, Manca M, Hessel MH, et al. CXCL10 is a circulating inflammatory marker in patients with advanced heart failure: a pilot study. J Cardiovasc Transl Res. 2016;9(4):302–314. doi:10.1007/s12265-016-9703-3
  • Ghafouri-Fard S, Shahir M, Taheri M, et al. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine. 2021;146:155640. doi:10.1016/j.cyto.2021.155640
  • Puapatanakul P, Chansritrakul S, Susantitaphong P, et al. Interferon-inducible protein 10 and disease activity in systemic lupus erythematosus and lupus nephritis: a systematic review and meta-analysis. Int J Mol Sci. 2019;20(19):4954. doi:10.3390/ijms20194954