107
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

LPA2 Alleviates Septic Acute Lung Injury via Protective Endothelial Barrier Function Through Activation of PLC-PKC-FAK

, , , , , & show all
Pages 5095-5109 | Received 27 Jun 2023, Accepted 27 Sep 2023, Published online: 08 Nov 2023

References

  • Cheng Z, Abrams ST, Toh J, et al. The critical roles and mechanisms of immune cell death in sepsis. Front Immunol. 2020;11:1918. doi:10.3389/fimmu.2020.01918
  • Fukatsu M, Ohkawara H, Wang X, et al. The suppressive effects of Mer inhibition on inflammatory responses in the pathogenesis of LPS-induced ALI/ARDS. Sci Signal. 2022;15(724):eabd2533. doi:10.1126/scisignal.abd2533
  • Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res. 2021;117(1):60–73. doi:10.1093/cvr/cvaa070
  • Li Z, Wang Y, Feng Q, et al. Inhibition of the C3a receptor attenuates sepsis-induced acute lung injury by suppressing pyroptosis of the pulmonary vascular endothelial cells. Free Radic Biol Med. 2022;184:208–217. doi:10.1016/j.freeradbiomed.2022.02.032
  • Yang L, Liu S, Han S, et al. The HDL from septic-ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung injury induced by cecal ligation and puncture (CLP) in mice. Respir Res. 2020;21(1):293. doi:10.1186/s12931-020-01553-3
  • Abraham S, Yeo M, Montero-Balaguer M, et al. VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol. 2009;19(8):668–674. doi:10.1016/j.cub.2009.02.057
  • Chen D, Shen M, Wang H, et al. Sirt3 maintains microvascular endothelial adherens junction integrity to alleviate sepsis-induced lung inflammation by modulating the interaction of VE-cadherin and β-catenin. Oxid Med Cell Longev. 2021;2021:8978795. doi:10.1155/2021/8978795
  • Li Y, Chen H, Shu R, et al. Hydrogen treatment prevents lipopolysaccharide-induced pulmonary endothelial cell dysfunction through RhoA inhibition. Biochem Biophys Res Commun. 2020;522(2):499–505. doi:10.1016/j.bbrc.2019.11.101
  • Liu Y, Mu S, Li X, Liang Y, Wang L, Ma X. Unfractionated heparin alleviates sepsis-induced acute lung injury by protecting tight junctions. J Surg Res. 2019;238:175–185. doi:10.1016/j.jss.2019.01.020
  • Koval M. Claudin heterogeneity and control of lung tight junctions. Annu Rev Physiol. 2013;75(1):551–567. doi:10.1146/annurev-physiol-030212-183809
  • Wang F, Liu S, Pei J, et al. LPA (3)-mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics. 2020;10(24):10892–10907. eCollection 2020. doi:10.7150/thno.47913
  • Yin F, Watsky MA. LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci. 2005;46(6):1927–1933. doi:10.1167/iovs.04-1256
  • Minnear F, Patil S, Bell D, Gainor JP, Morton CA. Platelet lipid(s) bound to albumin increases endothelial electrical resistance: mimicked by LPA. Am J Physiol Lung Cell Mol Physiol. 2001;281(6):L1337–L1344. doi:10.1152/ajplung.2001.281.6.L1337
  • Meeteren LA, Ruurs P, Stortelers C, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol. 2006;26(13):5015–5022. doi:10.1128/MCB.02419-05
  • Tanaka M, Okudaira S, Kishi S, et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem. 2006;281(35):25822–25830. doi:10.1074/jbc.M605142200
  • Teo ST, Teo S, Yung YC, Herr DR, Chun J. Lysophosphatidic acid in vascular development and disease. IUBMB Life. 2009;61(8):791–799. doi:10.1002/iub.220
  • Pei J, Cai L, Wang F, et al. LPA2 contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res. 2022;131(5):388–403. doi:10.1161/CIRCRESAHA.122.321036
  • Kihara Y, Maceyka M, Spiegel S, et al. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol. 2014;171(15):3575–3594. doi:10.1111/bph.12678
  • Patil R, Szabó E, Fells JI, et al. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. Chem Biol. 2015;22(2):206–216. doi:10.1016/j.chembiol.2014.12.009
  • He D, Su Y, Usatyuk PV, et al. Lysophosphatidic acid enhances pulmonary epithelial barrier integrity and protects endotoxin-induced epithelial barrier disruption and lung injury. J Biol Chem. 2009;284(36):24123–24132. doi:10.1074/jbc.M109.007393
  • Jiang J, Huang K, Xu S, Garcia JG, Wang C, Cai H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 2020;36:101638. doi:10.1016/j.redox.2020.101638
  • Yeomyeong K, Sungwoon L, Haiying Z, et al. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation. 2020;17(1):48. doi:10.1186/s12974-020-1727-6
  • Im K, Mareninov S, Diaz MF, Yong WH. An introduction to performing immunofluorescence staining. Methods Mol Biol. 2019;1897:299–311. doi:10.1007/978-1-4939-8935-5_26
  • Yang R, Yang H, Wei J, et al. Mechanisms underlying the effects of lianhua qingwen on sepsis-induced acute lung injury: a network pharmacology approach. Front Pharmacol. 2021;12:717652. eCollection 2021. doi:10.3389/fphar.2021.717652
  • Chrzanowska-Wodnicka M, Kraus AE, Gale D, et al. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood. 2008;111(5):2647–2656. doi:10.1182/blood-2007-08-109710
  • Kuck JL, Bastarache JA, Shaver CM, Fessel JP, Dikalov SI, May JM. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem Biophys Res Commun. 2018;495(1):433–437. doi:10.1016/j.bbrc.2017.11.058
  • Li Z, Yin M, Zhang H, et al. BMX represses thrombin-PAR1-mediated endothelial permeability and vascular leakage during early sepsis. Circ Res. 2020;126(4):471–485. doi:10.1161/CIRCRESAHA.119.315769
  • Chen X, Yang X, Wang ND, et al. Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest. 2003;63(7–8):497–503. doi:10.1080/00365510310003265
  • Panchatcharam M, Miriyala S, Yang F, et al. Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure. Circ Res. 2008;103(6):662–670. doi:10.1161/CIRCRESAHA.108.180778
  • Dohi T, Miyauchi K, Ohkawa R, et al. Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome. Atherosclerosis. 2013;229(1):192–197. doi:10.1016/j.atherosclerosis.2013.03.038
  • Kurano M, Kano K, Dohi T, et al. Different origins of lysophospholipid mediators between coronary and peripheral arteries in acute coronary syndrome. J Lipid Res. 2017;58(2):433–442. doi:10.1194/jlr.P071803
  • Sumitomo A, Siriwach R, Thumkeo D, et al. LPA induces keratinocyte differentiation and promotes skin barrier function through the LPAR1/LPAR5-RHO-ROCK-SRF Axis. J Invest Dermatol. 2019;139(5):1010–1022. doi:10.1016/j.jid.2018.10.034
  • Alexander JS, Patton WF, Christman BW, Cuiper LL, Haselton FR. Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro. Am J Physiol. 1998;274(1):H115–H122. doi:10.1152/ajpheart.1998.274.1
  • Van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 2000;20(12):E127–E133. doi:10.1161/01.atv.20.12.e127
  • Schulze C, Smales C, Rubin LL, Staddon JM. Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J Neurochem. 1997;68(3):991–1000. doi:10.1046/j.1471-4159.1997.68030991.x
  • Cai J, Wei J, Li S, Suber T, Zhao J. AM966, an antagonist of lysophosphatidic acid receptor 1, increases lung microvascular endothelial permeability through activation of rho signaling pathway and phosphorylation of VE-Cadherin. Mediators Inflamm. 2017;2017:6893560. doi:10.1155/2017/6893560
  • Inoue A, Arima N, Ishiguro J, et al. LPA-producing enzyme PA-PLA 1 α regulates hair follicle development by modulating EGFR signalling. EMBO J. 2011;30(20):4248–4260. doi:10.1038/emboj.2011.296
  • Nitzsche A, Poittevin M, Benarab A, et al. Endothelial S1P (1) signaling counteracts infarct expansion in ischemic stroke. Circ Res. 2021;128(3):363–382. doi:10.1161/CIRCRESAHA.120.316711
  • Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu Rev Pharmacol Toxicol. 2019;59(1):149–170. doi:10.1146/annurev-pharmtox-010818-021358
  • Cohan SL, Benedict RH, Cree BA, Deluca J, Hua LH, Chun J. The two sides of siponimod: evidence for brain and immune mechanisms in multiple sclerosis. CNS Drugs. 2022;36(7):703–719. doi:10.1007/s40263-022-00927-z
  • Zhang N, Tang S, Zhang J, Pei B, Pang T, Sun G. The dipeptidyl peptidase-4 inhibitor linagliptin ameliorates LPS-induced acute lung injury by maintenance of pulmonary microvascular barrier via activating the Epac1/AKT pathway. Biomed Pharmacother. 2022;155:113704. doi:10.1016/j.biopha.2022.113704