131
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characteristics of Autophagy-Related Genes, Diagnostic Models, and Their Correlation with Immune Infiltration in Keratoconus

ORCID Icon, , , , , & show all
Pages 3763-3781 | Received 21 May 2023, Accepted 23 Aug 2023, Published online: 29 Aug 2023

References

  • Ferrari G, Rama P. The keratoconus enigma: a review with emphasis on pathogenesis. Ocul Surf. 2020;18(3):363–373. doi:10.1016/j.jtos.2020.03.006
  • Hashemi H, Heydarian S, Hooshmand E, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea. 2020;39(2):263–270. doi:10.1097/ico.0000000000002150
  • Rabinowitz Y. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319. doi:10.1016/s0039-6257(97)00119-7
  • Fan Gaskin J, Patel D, McGhee C. Acute corneal hydrops in keratoconus - new perspectives. Am J Ophthalmol. 2014;157(5):921–928. doi:10.1016/j.ajo.2014.01.017
  • Gao H, Huang T, Pan Z, et al. Survey report on keratoplasty in China: a 5-year review from 2014 to 2018. PLoS One. 2020;15(10):e0239939. doi:10.1371/journal.pone.0239939
  • Gain P, Jullienne R, He Z, et al. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016;134(2):167–173. doi:10.1001/jamaophthalmol.2015.4776
  • Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent S, Wolffsohn J. Keratoconus: an updated review. J Br Contact Lens Assoc. 2022;45(3):101559. doi:10.1016/j.clae.2021.101559
  • Wang Y, Rabinowitz Y, Rotter J, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet. 2000;93(5):403–409. doi:10.1002/1096-8628(20000828)93:5
  • Héon E, Greenberg A, Kopp K, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11(9):1029–1036. doi:10.1093/hmg/11.9.1029
  • Udar N, Atilano S, Brown D, et al. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci. 2006;47(8):3345–3351. doi:10.1167/iovs.05-1500
  • Kiffin R, Bandyopadhyay U, Cuervo A. Oxidative stress and autophagy. Antioxid Redox Signal. 2006;8:152–162. doi:10.1089/ars.2006.8.152
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi:10.1016/j.cell.2007.12.018
  • Mariño G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 2011;23(2):198–206. doi:10.1016/j.ceb.2010.10.001
  • Shetty R, Sharma A, Pahuja N, et al. Oxidative stress induces dysregulated autophagy in corneal epithelium of keratoconus patients. PLoS One. 2017;12(9):e0184628. doi:10.1371/journal.pone.0184628
  • Chai P, Ni H, Zhang H, Fan X. The evolving functions of autophagy in ocular health: a double-edged sword. Int J Biol Sci. 2016;12(11):1332–1340. doi:10.7150/ijbs.16245
  • Sutton G, Madigan M, Roufas A, McAvoy J. Secreted frizzled-related protein 1 (SFRP1) is highly upregulated in keratoconus epithelium: a novel finding highlighting a new potential focus for keratoconus research and treatment. Clin Experiment Ophthalmol. 2010;38(1):43–48. doi:10.1111/j.1442-9071.2009.02216.x
  • Iqbal O, Fisher G, Vira S, et al. Increased expression of secreted frizzled-related protein-1 and microtubule-associated protein light chain 3 in keratoconus. Cornea. 2013;32(5):702–707. doi:10.1097/ICO.0b013e318282987a
  • Lema I, Durán J. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology. 2005;112(4):654–659. doi:10.1016/j.ophtha.2004.11.050
  • Lema I, Sobrino T, Durán J, Brea D, Díez-Feijoo E. Subclinical keratoconus and inflammatory molecules from tears. Br J Ophthalmol. 2009;93(6):820–824. doi:10.1136/bjo.2008.144253
  • Jun A, Cope L, Speck C, et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS One. 2011;6(1):e16437. doi:10.1371/journal.pone.0016437
  • Sun X, Zhang H, Shan M, et al. Comprehensive transcriptome analysis of patients with keratoconus highlights the regulation of immune responses and inflammatory processes. Front Genet. 2022;13:782709. doi:10.3389/fgene.2022.782709
  • Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39(2):211–227. doi:10.1016/j.immuni.2013.07.017
  • Jiang G, Tan Y, Wang H, et al. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer. 2019;18(1):17. doi:10.1186/s12943-019-0944-z
  • Davis S, Meltzer P. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–1847. doi:10.1093/bioinformatics/btm254
  • You J, Corley S, Wen L, et al. RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients. Sci Rep. 2018;8(1):389. doi:10.1038/s41598-017-18480-x
  • Shinde V, Hu N, Mahale A, et al. RNA sequencing of corneas from two keratoconus patient groups identifies potential biomarkers and decreased NRF2-antioxidant responses. Sci Rep. 2020;10(1):9907. doi:10.1038/s41598-020-66735-x
  • Kabza M, Karolak J, Rydzanicz M, et al. Collagen synthesis disruption and downregulation of core elements of TGF-β, Hippo, and Wnt pathways in keratoconus corneas. Eur J Hum Genet. 2017;25(5):582–590. doi:10.1038/ejhg.2017.4
  • Leek J, Johnson W, Parker H, Jaffe A, Storey J. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–883. doi:10.1093/bioinformatics/bts034
  • Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26(3):303–304. doi:10.1038/nbt0308-303
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Chin C, Chen S, Wu H, Ho C, Ko M, Lin C. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;S11. doi:10.1186/1752-0509-8-s4-s11
  • Li J, Liu S, Zhou H, Qu L, Yang J. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7. doi:10.1093/nar/gkt1248
  • Zhang Q, Liu W, Zhang H, et al. hTFtarget: a Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. Genomics Proteomics Bioinformatics. 2020;18(2):120–128. doi:10.1016/j.gpb.2019.09.006
  • Zhou K, Liu S, Sun W, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45:D43–D50. doi:10.1093/nar/gkw965
  • Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinform. 2013;14:244. doi:10.1186/1471-2105-14-244
  • Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics. 2019;11(1):123. doi:10.1186/s13148-019-0730-1
  • Cai W, van der Laan M. Nonparametric bootstrap inference for the targeted highly adaptive least absolute shrinkage and selection operator (LASSO) estimator. Int J Biostat. 2020. doi:10.1515/ijb-2017-0070
  • Park S. Nomogram: an analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg. 2018;155(4):1793. doi:10.1016/j.jtcvs.2017.12.107
  • Tataranni T, Piccoli C. Dichloroacetate (DCA) and Cancer: an Overview towards Clinical Applications. Oxid Med Cell Longev. 2019;2019:8201079. doi:10.1155/2019/8201079
  • Steen C, Liu C, Alizadeh A, Newman A. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx. Methods Mol Biol. 2020;2117:135–157. doi:10.1007/978-1-0716-0301-7_7
  • Newman A, Liu C, Green M, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Gomes J, Tan D, Rapuano C, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–369. doi:10.1097/ico.0000000000000408
  • Grzybowski A, McGhee C. The early history of keratoconus prior to Nottingham’s landmark 1854 treatise on conical cornea: a review. Clin Exp Optom. 2013;96(2):140–145. doi:10.1111/cxo.12035
  • Hyttinen J, Blasiak J, Felszeghy S, Kaarniranta K. MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev. 2021;67:101260. doi:10.1016/j.arr.2021.101260
  • Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy. 2022;18(2):320–339. doi:10.1080/15548627.2021.1926655
  • Yıldız E, Aydemir D, Zibandeh N, et al. Investigation of Mitophagy Biomarkers in Corneal Epithelium of Keratoconus Patients. Curr Eye Res. 2022;47(5):661–669. doi:10.1080/02713683.2022.2025846
  • Stival L, Avila L, Araujo D, et al. Correlation of hair cortisol and interleukin 6 with structural change in the active progression of keratoconus. J Cataract Refract Surg. 2022;48(5):591–598. doi:10.1097/j.jcrs.0000000000000809
  • Moura G, Santos A, Cenedeze M, et al. Increased lacrimal inflammatory mediators in patients with keratoconus. Mol Vis. 2021;27:656–665.
  • D’Souza S, Nair A, Sahu G, et al. Keratoconus patients exhibit a distinct ocular surface immune cell and inflammatory profile. Sci Rep. 2021;11(1):20891. doi:10.1038/s41598-021-99805-9
  • Saee-Rad S, Raoofian R, Mahbod M, et al. Analysis of superoxide dismutase 1, dual-specificity phosphatase 1, and transforming growth factor, beta 1 genes expression in keratoconic and non-keratoconic corneas. Mol Vis. 2013;19:2501–2507.
  • Wang L, Wang Y, Liu J, Zhao W. Identification of Important Genes of Keratoconus and Construction of the Diagnostic Model. Genet Res (Camb). 2022;2022:5878460. doi:10.1155/2022/5878460
  • Zhang J, Wang Y, Jiang X, Chan H. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol Life Sci. 2018;75(10):1737–1756. doi:10.1007/s00018-018-2755-6
  • Lee H, Park J, Kim B, Jun I, Kim T, Namkung W. Isorhamnetin Ameliorates Dry Eye Disease via CFTR Activation in Mice. Int J Mol Sci. 2021;22(8):3954. doi:10.3390/ijms22083954
  • Jeon D, Jun I, Lee H, et al. Novel CFTR Activator Cact-3 Ameliorates Ocular Surface Dysfunctions in Scopolamine-Induced Dry Eye Mice. Int J Mol Sci. 2022;23(9):5206. doi:10.3390/ijms23095206
  • Tsai T, Chen E, Li L, et al. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 2017;13(7):1130–1144. doi:10.1080/15548627.2017.1319544
  • Sun X, Yang S, Feng X, et al. The modification of ferroptosis and abnormal lipometabolism through overexpression and knockdown of potential prognostic biomarker perilipin2 in gastric carcinoma. Gastric Cancer. 2020;23(2):241–259. doi:10.1007/s10120-019-01004-z
  • Woehlbier U, Hetz C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci. 2011;36(6):329–337. doi:10.1016/j.tibs.2011.03.001
  • Huang H, Miao L, Liang F, et al. Neuroprotection by eIF2α-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss. Cell Death Dis. 2017;8(7):e2936. doi:10.1038/cddis.2017.329
  • Marola O, Syc-Mazurek S, Libby R. DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice. Cell Death Discov. 2019;5:140. doi:10.1038/s41420-019-0220-4
  • Guindolet D, Woodward A, Gabison E, Argüeso P. Alleviation of Endoplasmic Reticulum Stress Enhances Human Corneal Epithelial Cell Viability under Hyperosmotic Conditions. Int J Mol Sci. 2022;23(9):4528. doi:10.3390/ijms23094528
  • Haudek S, Taffet G, Schneider M, Mann D. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 2007;117(9):2692–2701. doi:10.1172/jci29134
  • Iwasaki M, Homma S, Hishiya A, Dolezal S, Reed J, Takayama S. BAG3 regulates motility and adhesion of epithelial cancer cells. Cancer Res. 2007;67(21):10252–10259. doi:10.1158/0008-5472.Can-07-0618
  • De Marco M, Falco A, Iaccarino R, et al. An emerging role for BAG3 in gynaecological malignancies. Br J Cancer. 2021;125(6):789–797. doi:10.1038/s41416-021-01446-2
  • Kirk J, Cheung J, Feldman A. Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. J Clin Invest. 2021;131(16):e149415. doi:10.1172/JCI149415
  • Qu H, Feldman A, Hakonarson H. Genetics of BAG3: a Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies. J Am Heart Assoc. 2022;11(23):e027373. doi:10.1161/jaha.122.027373
  • Ying Z, Lv Q, Yao X, et al. BAG3 promotes autophagy and suppresses NLRP3 inflammasome activation in Parkinson’s disease. Ann Transl Med. 2022;10(22):1218. doi:10.21037/atm-22-5159
  • Hamacher-Brady A, Brady N. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci. 2016;73(4):775–795. doi:10.1007/s00018-015-2087-8
  • Liu K, Zhao Q, Sun H, et al. BNIP3 (BCL2 interacting protein 3) regulates pluripotency by modulating mitochondrial homeostasis via mitophagy. Cell Death Dis. 2022;13(4):334. doi:10.1038/s41419-022-04795-9
  • Sarker-Nag A, Hutcheon A, Karamichos D. Mitochondrial Profile and Responses to TGF-β Ligands in Keratoconus. Curr Eye Res. 2016;41(7):900–907. doi:10.3109/02713683.2015.1078361
  • St Leger A, Desai J, Drummond R, et al. An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal γδ T Cells. Immunity. 2017;47(1):148–158.e5. doi:10.1016/j.immuni.2017.06.014