149
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Suppression of P2X7R by Local Treatment Alleviates Acute Gouty Inflammation

, , , ORCID Icon & ORCID Icon
Pages 3581-3591 | Received 16 May 2023, Accepted 04 Aug 2023, Published online: 22 Aug 2023

References

  • Dalbeth N, Choi HK, Joosten LAB, et al. Gout. Nat. Rev Dis Primers. 2019;5(1):69. doi:10.1038/s41572-019-0115-y
  • Zhou W, Zhu J, Guo J, et al. Health-related quality of life assessed by Gout Impact Scale (GIS) in Chinese patients with gout. Curr Med Res Opin. 2020;36(12):2071–2078. doi:10.1080/03007995.2020.1840341
  • Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity. Immunol Rev. 2010;233(1):203–217. doi:10.1111/j.0105-2896.2009.00851.x
  • Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877–3883. doi:10.4049/jimmunol.176.7.3877
  • Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–1589. doi:10.1038/sj.cdd.4402195
  • Di Virgilio F, Dal Ben D, Sarti AC, et al. The P2X7 receptor in infection and inflammation. Immunity. 2017;47(1):15–31. doi:10.1016/j.immuni.2017.06.020
  • Dai X, Fang X, Xia Y, et al. ATP-activated P2X7R promote the attack of acute gouty arthritis in rats through activating NLRP3 inflammasome and inflammatory cytokine production. J Inflamm Res. 2022;15:1237–1248. doi:10.2147/JIR.S351660
  • Li X, Gao J, Tao J. Purinergic signaling in the regulation of gout flare and resolution. Front Immunol. 2021;12:785425. doi:10.3389/fimmu.2021.785425
  • Li X, Wan A, Liu Y, et al. P2X7R mediates the synergistic effect of ATP and MSU crystals to induce acute gouty arthritis. Oxid Med Cell Longev. 2023;2023:3317307. doi:10.1155/2023/3317307
  • Communi D, Janssens R, Suarez-Huerta N, et al. Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cell Signal. 2000;12(6):351–360. doi:10.1016/S0898-6568(00)00083-8
  • Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241. doi:10.1038/nature04516
  • Tao JH, Zhang Y, Li XP. P2X7R: a potential key regulator of acute gouty arthritis. Semin Arthritis Rheum. 2013;43(3):376–380. doi:10.1016/j.semarthrit.2013.04.007
  • Jalilian I, Peranec M, Curtis BL, et al. Activation of the damage-associated molecular pattern receptor P2X7 induces interleukin-1beta release from canine monocytes. Vet Immunol Immunopathol. 2012;149(1–2):86–91. doi:10.1016/j.vetimm.2012.05.004
  • Li C, Li Z, Liu S, et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat Commun. 2015;6:7041. doi:10.1038/ncomms8041
  • Xu J, Zhang W, Song W, et al. Relationship between KCNQ1 polymorphism and type 2 diabetes risk in northwestern China. Pharmgenomics Pers Med. 2021;14:1731–1751. doi:10.2147/PGPM.S340813
  • Yu XX, Liao MQ, Zeng YF, et al. Associations of KCNQ1 polymorphisms with the risk of type 2 diabetes mellitus: an updated meta-analysis with trial sequential analysis. J Diabetes Res. 2020;2020:7145139. doi:10.1155/2020/7145139
  • Chua HC, Servatius H, Asatryan B, et al. Unexplained cardiac arrest: a tale of conflicting interpretations of KCNQ1 genetic test results. Clin Res Cardiol. 2018;107(8):670–678. doi:10.1007/s00392-018-1233-3
  • Wang Z, Wang L, Liu W, et al. Pathogenic mechanism and gene correction for LQTS-causing double mutations in KCNQ1 using a pluripotent stem cell model. Stem Cell Res. 2019;38:101483. doi:10.1016/j.scr.2019.101483
  • Than BL, Goos JA, Sarver AL, et al. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene. 2014;33(29):3861–3868. doi:10.1038/onc.2013.350
  • Li L, Fei Z, Ren J, et al. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol. 2008;9:49. doi:10.1186/1471-2172-9-49
  • Schorn C, Frey B, Lauber K, et al. Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem. 2011;286(1):35–41. doi:10.1074/jbc.M110.139048
  • Yang Q, Zhang Q, Qing Y, et al. miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice. Arthritis Res Ther. 2018;20(1):144. doi:10.1186/s13075-018-1550-y
  • Novakovic A, Pavlovic M, Milojevic P, et al. Different potassium channels are involved in relaxation of rat renal artery induced by P1075. Basic Clin Pharmacol Toxicol. 2012;111(1):24–30.
  • Koo TY, Lee JG, Yan JJ, et al. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells. Kidney Int. 2017;92(2):415–431. doi:10.1016/j.kint.2017.01.031
  • Gao T, Li K, Liang F, et al. KCNQ1 potassium channel expressed in human sperm is involved in sperm motility, acrosome reaction, protein tyrosine phosphorylation, and ion homeostasis during capacitation. Front Physiol. 2021;12:761910. doi:10.3389/fphys.2021.761910
  • Ren W, Rubini P, Tang Y, et al. Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases. Int J Mol Sci. 2021;23(1):232. doi:10.3390/ijms23010232
  • Lee SW, Lee SS, Oh DH, et al. Genetic Association for P2X7R rs3751142 and CARD8 rs2043211 polymorphisms for susceptibility of gout in Korean men: multi-center study. J Korean Med Sci. 2016;31(10):1566–1570. doi:10.3346/jkms.2016.31.10.1566
  • Ying Y, Chen Y, Li Z, et al. Investigation into the association between P2RX7 gene polymorphisms and susceptibility to primary gout and hyperuricemia in a Chinese Han male population. Rheumatol Int. 2017;37(4):571–578. doi:10.1007/s00296-017-3669-6
  • Huang H, Kuenze G, Smith JA, et al. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci Adv. 2018;4(3):eaar2631. doi:10.1126/sciadv.aar2631
  • van de Vondervoort I, Amiri H, Bruchhage MMK, et al. Converging evidence points towards a role of insulin signaling in regulating compulsive behavior. Transl Psychiatry. 2019;9(1):225. doi:10.1038/s41398-019-0559-6
  • Travers ME, Mackay DJ, Dekker Nitert M, et al. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes. 2013;62(3):987–992. doi:10.2337/db12-0819
  • Tulay P, Temel SG, Ergoren MC. Investigation of KCNQ1 polymorphisms as biomarkers for cardiovascular diseases in the Turkish Cypriots for establishing preventative medical measures. Int J Biol Macromol. 2019;124:537–540. doi:10.1016/j.ijbiomac.2018.11.227
  • Torrado M, Fernandez G, Ganoza CA, et al. A cryptic splice-altering KCNQ1 variant in trans with R259L leading to Jervell and Lange-Nielsen syndrome. NPJ Genomic Medicine. 2021;6(1):21. doi:10.1038/s41525-021-00183-y
  • Homma K. The pathological mechanisms of hearing loss caused by KCNQ1 and KCNQ4 variants. Biomedicines. 2022;10(9):2254. doi:10.3390/biomedicines10092254
  • Di A, Xiong S, Ye Z, et al. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity. 2018;49(1):56–65 e4. doi:10.1016/j.immuni.2018.04.032
  • Wen J, Li H, Dai H, et al. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Mater Today Bio. 2023;19:100597. doi:10.1016/j.mtbio.2023.100597