173
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Immune Cell-Derived Exosomes in Inflammatory Disease and Inflammatory Tumor Microenvironment: A Review

, , , , , & show all
Pages 301-312 | Received 05 Jul 2023, Accepted 18 Oct 2023, Published online: 16 Jan 2024

References

  • Iain BM, Ellen MG. Immune-mediated inflammatory disease therapeutics: past, present and future. Nat Rev Immunol. 2021. doi:10.1038/s41577-021-00603-1
  • Tian Y, Cheng C, Wei Y, Yang F, Li G. The role of exosomes in inflammatory diseases and tumor-related inflammation. Cells. 2022;11(6):1005. doi:10.3390/cells11061005
  • Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–978. doi:10.1016/0092-8674(83)90040-5
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–9420. doi:10.1016/S0021-9258(18)48095-7
  • Veerman RE, Gucluler Akpinar G, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles - functions and therapeutic applications. Trends Mol Med. 2019;25(5):382–394. doi:10.1016/j.molmed.2019.02.003
  • Anguluri NVLK, Sundarrajan S, Seeram R. Therapeutic applications of exosomes in various diseases: a review. Mat Sci Engin. 2021. doi:10.1016/j.msec.2021.112579
  • Sangiliyandi G, Min-Hee K, Jin-Hoi K. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine. 2021. doi:10.2147/ijn.s291956
  • Weiping Z, Zhengbo W, Honglin C, Yuyou D. Exosomes as carriers for drug delivery in cancer therapy. Pharm Res. 2022. doi:10.1007/s11095-022-03224-y
  • Ben M, Pranitha P, Wadad M, et al. Exosomal markers (CD63 and CD9) expression and their prognostic significance using immunohistochemistry in right-sided and left-sided colon cancer. J Clin Oncol. 2020. doi:10.1200/jco.2020.38.4_suppl.182
  • Moh’d MK, Arun B, Girijesh KP, et al. The prognostic significance of exosomal markers (CD63 and CD9) expression using immunohistochemistry in patients with pancreatic ductal adenocarcinoma. J Clin Oncol. 2018. doi:10.1200/jco.2018.36.4_suppl.342
  • Yunjoo I, Hongseok Y, Ryoung-Eun K, Jin Young L, Junseon P, Kyeongman J. Exosomal CD63 in critically ill patients with sepsis. Sci Rep. 2021. doi:10.1038/s41598-021-99777-w
  • Azam B, Elnaz A. Heat shock proteins in infection. Clin Chimica Acta. 2019. doi:10.1016/j.cca.2019.08.015
  • Stuart KC, Jianlin G, Ayesha M. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol. 2016. doi:10.3389/fimmu.2016.00159
  • Elsa L, Yu-Chun W, Rodrigo G, et al. Hsp90 mediates membrane deformation and exosome release. Mol Cell. 2018. doi:10.1016/j.molcel.2018.07.016
  • Francesco S, Luigi L, Giovanna P, et al. Role of human leukocyte antigen system as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Int J Mol Sci. 2020. doi:10.3390/ijms21197295
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367. doi:10.1126/science.aau6977
  • Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi:10.1038/s41556-018-0250-9
  • Shapouri‐Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi:10.1002/jcp.26429
  • Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2016. doi:10.1146/annurev-physiol-022516-034339
  • Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome‐guided phenotypic switch of M1 To M2 macrophages for cutaneous wound healing. Advan Sci. 2019;6. doi:10.1002/advs.201900513
  • Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18(3):579–587. doi:10.1038/s41423-020-00541-3
  • Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypert Res. 2016. doi:10.1038/hr.2016.163
  • Peng P, Hao Y, Cong X, et al. Exosomes-mediated phenotypic switch of macrophages in the immune microenvironment after spinal cord injury. Bio Pharmacoth. 2021;144:112311. doi:10.1016/j.biopha.2021.112311
  • Mengdie L, Tao W, He T, Guohua W, Liang Z, Yijie S. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells, Nanomed Biotechnol. 2019. doi:10.1080/21691401.2019.1669617
  • Jianjun W, Zhiyong D, Zeyou W, et al. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res. 2016:2016:1.
  • Hui Y, Qian Z, Ping F, et al. Triggering receptor expressed on myeloid cells-2 (TREM2) inhibits steroidogenesis in adrenocortical cell by macrophage-derived exosomes in lipopolysaccharide-induced septic shock. Mol Cell Endocrinol. 2021. doi:10.1016/j.mce.2021.111178
  • Yong Z, Shushan Z, Liang C, et al. Mg2+ -mediated autophagy-dependent polarization of macrophages mediates the osteogenesis of bone marrow stromal stem cells by interfering with macrophage-derived exosomes containing miR-381. J Orthop Res. 2021. doi:10.1002/jor.25189
  • Inbar AA, Adam M. Proteomic analysis of human T cell‐derived exosomes reveals differential RAS/MAPK signaling. Eur J Immunol. 2018. doi:10.1002/eji.201847655
  • Mingcheng C, Wenqiao F, Xiaoying L, et al. The regulation of S. aureus induced inflammatory responses in bovine mammary epithelial cells. Front Vet Sci. 2021. doi:10.3389/fvets.2021.683886
  • Xuesong Y, Chibing H, Bo S, et al. CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013. doi:10.1016/j.cellimm.2013.06.010
  • Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, Lombardi G. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–40. doi:10.1002/eji.201242909
  • !!! INVALID CITATION !!! [33].
  • Saunderson SC, Schuberth PC, Dunn AC, et al. Induction of exosome release in primary B cells stimulated via CD40 and the IL-4 receptor. J Immunol. 2008;180:8146–8152. doi:10.4049/jimmunol.180.12.8146
  • Aled C, Atilla T, Sharon D, Robert S, Malcolm DM, Maurice BH. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004. doi:10.1096/fj.03-1094fje
  • Sophie V, Magali T, Caroline F, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One. 2009. doi:10.1371/journal.pone.0004942
  • Lifu W, Zilong Y, Shuo W, et al. Exosomes derived from dendritic cells treated with schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis. Front Pharmacol. 2017. doi:10.3389/fphar.2017.00651
  • Peters PJ, Geuze HJ, Van der Donk HA, et al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989;19(8):1469–1475. doi:10.1002/eji.1830190819
  • Akansha A, Giorgia F, Marilena L, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014. doi:10.3389/fimmu.2014.00555
  • Sim LT, Dominic AB, Monica S, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018. doi:10.1038/s41598-018-24531-8
  • McLellan AD. Exosome release by primary B cells. Crit Rev Immunol. 2009;29(3):203–217. doi:10.1615/critrevimmunol.v29.i3.20
  • Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. 2014;10(7):1517–1527. doi:10.1016/j.nano.2014.03.014
  • Liu W, Lu J, Zhou H, et al. B细胞来源外泌体的免疫调控作用研究进展 [Role of B cell-derived exosomes in immunoregulation: review]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2021;37(2):174–177. Chinese.
  • LeBleu VS, Kalluri R. Exosomes exercise inhibition of anti-tumor immunity during chemotherapy. Immunity. 2019;50(3):547–549. doi:10.1016/j.immuni.2019.02.019
  • Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 2017;36(20):3012–3028. doi:10.15252/embj.201696003
  • Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant. 2006;6(7):1541–1550. doi:10.1111/j.1600-6143.2006.01344.x
  • Tanja IN, Ulf G, Khaleda RQ, Mikael CIK, Susanne G. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol. 2013. doi:10.4049/jimmunol.1203082
  • Chao W, Zhengyuan L, Zhongli Z, et al. Allogeneic dendritic cells induce potent antitumor immunity by activating KLRG1+CD8 T cells. Sci Rep. 2019. doi:10.1038/s41598-019-52151-3
  • Daniel T, Francesc B, Carolina V-B, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 2018. doi:10.1038/s41467-018-05077-9
  • Jonathan MP, Mélinda C, Sophie V, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol. 2014. doi:10.4049/jimmunol.1400703
  • Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest. 2016;126(4):1173–1180. doi:10.1172/JCI81131
  • Sinatti P, Sánchez Romero EA, Martínez-Pozas O, Villafañe JH. Effects of patient education on pain and function and its impact on conservative treatment in elderly patients with pain related to hip and knee osteoarthritis: a systematic review. Int J Environ Res Public Health. 2022;19:6194. doi:10.3390/ijerph19106194
  • Sánchez-Romero EA, González-Zamorano Y, Arribas-Romano A, et al. Efficacy of manual therapy on facilitatory nociception and endogenous pain modulation in older adults with knee osteoarthritis: a case series. Appl Sci. 2021. doi:10.3390/app11041895
  • Sánchez Romero EA, Fernández-Carnero J, Calvo-Lobo C, Ochoa Sáez V, Burgos Caballero V, Pecos-Martín D. Is a combination of exercise and dry needling effective for knee OA? Pain Medicine. 2020. doi:10.1093/pm/pnz036
  • Sánchez-Romero EA, Battaglino A, Campanella W, Turroni S, Bishop MD, Villafañe JH. Impact on blood tests of lower limb joint replacement for the treatment of osteoarthritis: hip and knee. Top Geriatr Rehabil. 2021;37(4):227–229. doi:10.1097/TGR.0000000000000337
  • Tofiño-Vian M, Guillén MI, Pérez Del Caz MD, Silvestre A, Alcaraz MJ. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cellular Physiol Biochem. 2018;47:11–25. doi:10.1159/000489739
  • Li K, Yan G, Huang H, et al. Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages. J Nanobiotechnology. 2022. doi:10.1186/s12951-021-01236-1
  • Yunxia T, Jing Z, Zhen W, et al. Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem. 2021. doi:10.1016/j.bioorg.2021.104978
  • Zha Xi D-W, Ma J, Liu C-Z, et al. Exosomes derived from M2 macrophages exert a therapeutic effect via inhibition of the PI3K/AKT/mTOR pathway in rats with knee osteoarthritic. Biomed Res Int. 2021. doi:10.1155/2021/7218067
  • Ziyi L, Yafei W, Shilun L, Yukun L. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs. Front Endocrino. 2021. doi:10.3389/fendo.2021.680328
  • Kun L, Xin L, Zhao-Yong L, et al. Macrophage-derived exosomes promote bone mesenchymal stem cells towards osteoblastic fate through microRNA-21a-5p. Front Bioeng Biotechnol. 2022. doi:10.3389/fbioe.2021.801432
  • Liping W, Chunyan W, Xuqiang J, Jing Y. Circulating Exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem. 2018. doi:10.1159/000494793
  • Yosuke T, Wataru A, Atsushi S, Seiji S, Mitsuyoshi U. Small RNAs detected in exosomes derived from the MH7A synovial fibroblast cell line with TNF-α stimulation. PLoS One. 2018. doi:10.1371/journal.pone.0201851
  • Wang H, Fang K, Yan W, Chang X. T-cell immune imbalance in rheumatoid arthritis is associated with alterations in NK cells and NK-Like T cells expressing CD38. J Innate Immun. 2021. doi:10.1159/000516642
  • Hui L, Yue F, Xiu Z, et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Contro Rel. 2021. doi:10.1016/j.jconrel.2021.11.019
  • Hongliang Z, Yiyang Y, Jun W, et al. Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis. Cancer Cell Int. 2021. doi:10.1186/s12935-021-01893-0
  • Chiara C, Tim B, Florent D, et al. Molecular profiling and functional analysis of macrophage-derived tumor extracellular vesicles. Cell Rep. 2019. doi:10.1016/j.celrep.2019.05.008
  • Zhen-zi B, Hong-yan L, Cheng-hua L, Chuan-lun S, Xiao-nan Z. M1 macrophage-derived exosomal MicroRNA-326 suppresses hepatocellular carcinoma cell progression via mediating NF-κB signaling pathway. Nanoscale Res Lett. 2020. doi:10.1186/s11671-020-03432-8
  • Yusheng W, Kun S, Ninggang Z, Jian Z, Bangwei C. Tumor-associated macrophage-derived exosomes promote the progression of gastric cancer by regulating the P38MAPK signaling pathway and the immune checkpoint PD-L1. Cancer Biother Radiopharm. 2021. doi:10.1089/cbr.2021.0218
  • Yeon Woong C, Mikyung K, Han Young K, et al. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS Nano. 2018. doi:10.1021/acsnano.8b02446